15 research outputs found

    Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation

    Get PDF
    This study aims to assess the torrefaction of biomass as alternative renewable energy fuel to coal during co-firing. It was evaluated that torrefaction improves biomass grindability to such an extent that it can be used in coal mills with coal in co-firing without capital intensive modification. Torrefaction of beech wood was performed on a batch scale reactor at three different temperatures (200, 250 and 300 °C) with 30 min of residence time. The chemical structural changes in torrefied biomass were investigated with binding energies and FTIR (Fourier transform infrared) analysis. Monocombustion and co-combustion tests were performed to examine the combustion behaviour regarding flue gas emissions (CO, NOx and SO2) at 0.5, 1.5 and 2.5 m distance from the burner opening along with fly ash analysis. The FTIR and binding energies showed that lignin hardly affected during light torrefaction while hemicellulosic material was significantly depleted. The Hardgrove grindability index (HGI) was calculated with three methods (DIN51742, IFK and ISO). The medium temperature torrefied biomass (MTTB) yields HGI value in the range of 32–37 that was comparable with HGI of El Cerrejon coal (36–41). A slight change in temperature enabled the torrefied beech wood to be co-milled with coal without capital intensive modification and improved grindability. Comparing the combustion behaviour of single fuels, low temperature torrefied biomass (LTTB) produces less amount of NOx (426 mg/m3), CO (0.002 mg/m3) and SO2 (2 mg/m3) as compared MTTB and raw beech wood. In the case of co-combustion, it was found that blending of coal with raw biomass does not show a stable behaviour. However, premixing of 50% of coal with 50% of torrefied biomasses (MTTB and LTTB) gives most stable behaviour and reduces NOx almost 30% and SOx up to almost 50% compared to coal. The fly ash contents analysis proved that K2O contents much decreased during co-firing of coal and torrefied fuels that could cause ash related issues during combustion of raw biomass

    Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus

    No full text
    Torrefaction is a thermochemical pre-treatment process for upgrading the properties of biomass to resemble those of fossil fuels such as coal. Biomass properties of particular interest are chemical composition, physical property and combustion characteristics. In this work, torrefaction of beech wood and miscanthus (sinensis) was carried out to study the influence of torrefaction temperature (240–300 °C) and residence time (15–150 min) on the aforementioned properties of the biomass. Results of the study revealed that torrefaction temperature has a significant influence on mass and energy yields, whereas the influence of the residence time becomes more apparent for the higher torrefaction temperatures (>280 °C). Torrefied miscanthus resulted in higher energy densification compared to beech wood for a residence time of 30 min. A significant improvement in grindability of the torrefied beech wood was obtained even for lightly torrefied beech wood (at 280 °C and 15 min of residence time). Observation from the combustion study showed that the ignition temperature is slightly affected by the torrefaction temperature. As a whole, the torrefaction temperature determines the characteristics of the torrefied fuel compared to other process parameters like residence time. Furthermore, with optimal process conditions, torrefaction produces a solid fuel with combustion reactivity and porosity comparable to raw biomass, whereas grindability and heating value are comparable to low quality coal

    Spontaneous ignition of wood, char and RDF in a lab scale packed bed

    No full text
    Many municipal waste combustors use preheated primary air in the first zone to dry the waste. In most cases the preheat temperature does not exceed 140 °C. In previous experiments it is found that at temperatures around 200 °C, in some circumstances, self- or spontaneous ignition can be achieved. Using preheated air can be a powerful tool to control the ignition and combustion processes in a waste combustion plant. To use this tool effectively, the influence of the preheated air on the fuel bed needs to be well understood. The present work is done to investigate in a systematically way the spontaneous ignition behaviour of a packed bed heated with a preheated air stream. Experiments on a lab scale packed bed reactor are carried out for various fuel types. Because MSW is an highly inhomogeneous fuel, wood and char are used as model fuels. To include the inhomogeneous character of MWS, also experiments are carried out with RDF. Parameters such as primary air flow velocity and temperature, addition of inert material, moisture content of the fuel (wood chips) and particle size (char) have been changed to see their effect on the spontaneous ignition temperature and on the minimum air temperature needed for ignition. The spontaneous ignition temperature is defined as the bed temperature at which a transition takes place from a negligible or slow fuel reaction rate to a rapid oxidation of either the volatiles or the solid fuel without an external source such as a spark or a flame. The minimum or critical air temperature is defined as the lowest air temperature at which ignition can be obtained. It is found that the type of fuel has influence on the ignition temperatures. Besides both the critical air temperature needed for the spontaneous ignition and the spontaneous ignition temperature increase with an increase in the primary air velocity (between 0.1 and 0.5 m/s) and increasing the added inert fraction (between 0 and 40 wt%), irrespective of the fuel type. The effect of air flow velocity and temperature and also the effect of inert on both the critical air temperature and the spontaneous ignition temperature can be explained qualitatively by using Semenov’s analysis of thermal explosions. Semenov’s theory is quantitatively applied to predict the spontaneous ignition and the critical air temperatures for wood

    Spontaneous ignition of wood, char and RDF in a lab scale packed bed

    Get PDF
    Many municipal waste combustors use preheated primary air in the first zone to dry the waste. In most cases the preheat temperature does not exceed 140 °C. In previous experiments it is found that at temperatures around 200 °C, in some circumstances, self- or spontaneous ignition can be achieved. Using preheated air can be a powerful tool to control the ignition and combustion processes in a waste combustion plant. To use this tool effectively, the influence of the preheated air on the fuel bed needs to be well understood. The present work is done to investigate in a systematically way the spontaneous ignition behaviour of a packed bed heated with a preheated air stream. Experiments on a lab scale packed bed reactor are carried out for various fuel types. Because MSW is an highly inhomogeneous fuel, wood and char are used as model fuels. To include the inhomogeneous character of MWS, also experiments are carried out with RDF. Parameters such as primary air flow velocity and temperature, addition of inert material, moisture content of the fuel (wood chips) and particle size (char) have been changed to see their effect on the spontaneous ignition temperature and on the minimum air temperature needed for ignition. The spontaneous ignition temperature is defined as the bed temperature at which a transition takes place from a negligible or slow fuel reaction rate to a rapid oxidation of either the volatiles or the solid fuel without an external source such as a spark or a flame. The minimum or critical air temperature is defined as the lowest air temperature at which ignition can be obtained. It is found that the type of fuel has influence on the ignition temperatures. Besides both the critical air temperature needed for the spontaneous ignition and the spontaneous ignition temperature increase with an increase in the primary air velocity (between 0.1 and 0.5 m/s) and increasing the added inert fraction (between 0 and 40 wt%), irrespective of the fuel type. The effect of air flow velocity and temperature and also the effect of inert on both the critical air temperature and the spontaneous ignition temperature can be explained qualitatively by using Semenov's analysis of thermal explosions. Semenov's theory is quantitatively applied to predict the spontaneous ignition and the critical air temperatures for wood. © 2010 Elsevier Ltd. All rights reserved

    Experimental Study on Dry Torrefaction of Beech Wood

    Get PDF
    Torrefaction is a thermochemical pre-treatment process for upgrading the properties of biomass to resemble those of fossil fuels such as coal. Biomass properties of particular interest are chemical composition, physical property and combustion characteristics. In this work, torrefaction of beech wood and miscanthus (sinensis) was carried out to study the influence of torrefaction temperature (240–300 °C) and residence time (15–150 min) on the aforementioned properties of the biomass. Results of the study revealed that torrefaction temperature has a significant influence on mass and energy yields, whereas the influence of the residence time becomes more apparent for the higher torrefaction temperatures (>280 °C). Torrefied miscanthus resulted in higher energy densification compared to beech wood for a residence time of 30 min. A significant improvement in grindability of the torrefied beech wood was obtained even for lightly torrefied beech wood (at 280 °C and 15 min of residence time). Observation from the combustion study showed that the ignition temperature is slightly affected by the torrefaction temperature. As a whole, the torrefaction temperature determines the characteristics of the torrefied fuel compared to other process parameters like residence time. Furthermore, with optimal process conditions, torrefaction produces a solid fuel with combustion reactivity and porosity comparable to raw biomass, whereas grindability and heating value are comparable to low quality coal

    Comparative analysis of pyrolytic liquid products of beech wood, flax shives and woody biomass components

    No full text
    International audienceDuring the course of this study, beech wood, flax shives and the three biomass components: cellulose, hemicellulose and lignin, were pyrolysed at 450 °C, 500 °C, 550 °C and 600 °C. The liquid bio-oil samples recovered in each case were analysed through gas chromatography-mass spectrometry (GC–MS) and gas chromatography-flame ionisation detection (GC-FID) to identify and quantify the different molecules present. Then, principal component analysis (PCA) was used to visualise the global trend of the data. It was found that in most cases, carboxylic acids were the dominating chemical group present. Deeper analysis of the results also showed that by increasing the pyrolytic temperature, the production of some chemical groups, like carboxylic acids, was enhanced while that of other groups, like sugars and furans, was diminished. Examination of the pyrolytic liquid products from the different biomass components helped to determine the provenance of each molecule family. These results allowed to see that the formation or degradation of specific chemical families did in fact follow about the same trend as that for xylan, used as a proxy for hemicellulose, at the different pyrolytic temperatures. A quick glance at the oxygen content of the bio-oils also showed an increasing trend with pyrolytic temperature
    corecore