10 research outputs found

    A Systems Theory Perspective

    Get PDF
    Aktualisierung: Am 12. Oktober 2018 wurde die digitale Version des Buchbeitrags um den fehlenden Teil (Seiten 53-66) ergänzt

    Untersuchungen zur Systemanalyse der sozialen Motivation III: Eine Ästimationsstudie zur Sicherheits- und Erregungsregulation während der Adoleszenz.

    Get PDF
    In einem simulierten Weltraumflug wurden die Dynamik und die Entwicklung der Sicherheits- und Erregungsmotivation, die während der Adoleszenz für die Ablösung von den primär vertrauten Bindungspartnern und die Zuwendung zu zunächst fremden Mitmenschen eine zentrale Rolle spielen, an 32 Vpn beiderlei Geschlechts untersucht. Auf der Basis eines systemtheoretischen Modells, das im ersten Beitrag dieser Serie beschrieben worden ist, wurde eine Parameterästimation durchgeführt, die eine befriedigende Rekonstruktion des Flugverhaltens der meisten Vpn erlaubte. Die Parameter konnten psychologisch einleuchtend interpretiert werden. Die Ergebnisse weisen auf eine geschlechtsspezifisch unterschiedliche Entwicklung der beiden Motivsysteme während der Reifezeit hin

    Duration of Dengue Viremia in Blood Donors and Relationships Between Donor Viremia, Infection Incidence and Clinical Case Reports During a Large Epidemic

    No full text
    Background. Dengue viruses (DENV-1–4) pose a transfusion-transmission risk. This study estimated the dengue RNA detection period in asymptomatic blood donors and relationships between donor viremia and dengue incidence during a large epidemic. Methods. Donor samples from the 2012 dengue transmission season in Rio de Janeiro, Brazil, were tested for DENV RNA by a transcription-mediated amplification (TMA) assay, with DENV types and viral loads determined by polymerase chain reaction. Samples collected during the first and last weeks of enrollment were tested for DENV immunoglobulin (Ig) G and IgM to estimate incidence during the study period, which was analyzed relative to nucleic acid amplification technology (NAT) yield to estimate the duration of NAT-detectable viremia and compared with reported clinical dengue cases in Rio. Results. Samples from 16 241 donations were tested; 87 (0.54%) were confirmed as DENV-4 RNA positive. Dengue IgM-positive/IgG-positive reactivity increased from 2.8% to 8.8%, indicating a 6.2% incidence (95% confidence interval [CI], 3.2%–9.1%) during the study period. Based on these data, we estimated a 9.1-day period (95% CI, 4.4–13.9 days) of RNA detectable with TMA. With 100 475 reported cases of clinical dengue, 1 RNA-positive donation was identified per 800 DENV cases. Conclusions. These parameters allow projections of dengue incidence from donor NAT yield data and vice versa, and suggest that viremic donations will be rare relative to clinical disease cases

    Dengue Virus Immunoglobulin M Detection in a Reference Laboratory Setting during the 2010 Dengue Virus Outbreak on Caribbean Islands ▿

    No full text
    A large outbreak of dengue virus (DV) infections occurred on Caribbean islands during 2010, with cases peaking during the second half of the year. In conjunction with the outbreak, we observed an unprecedented spike in the number of sera submitted for DV antibody testing between June and December 2010, with a concomitant increase in the number of IgM-positive specimens, indicative of acute DV infection. Analysis of the place of residence of the IgM-positive patients identified from June to December of 2010 revealed that 58.1% were residents of Caribbean islands (Puerto Rico and the U.S. Virgin Islands), whereas 40.6% were residents of the U.S. mainland or Hawaii. The U.S. residents represented 42 states plus the District of Columbia, but most (53%) were from just 3 states (California, Florida, and New York). In comparison to the Caribbean IgM-positive patient group, the U.S. IgM-positive patient group contained proportionately more adults 21 to 60 years old and fewer individuals <21 years old. These findings indicate that the 2010 Caribbean DV outbreak affected many U.S. residents (mostly adults, presumably travelers) from diverse geographic areas and emphasize the potential for a viremic DV-infected returning traveler to spark a local DV outbreak by introducing DV into a community with competent mosquito vectors

    Antibody-enhanced dengue disease generates a marked CNS inflammatory response in the black-tufted marmoset Callithrix penicillata

    No full text
    Universidade do Estado do Pará. Curso de Graduação em Medicina. Centro de Ciências da Saúde. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade da Amazônia. Curso de Graduação em Biologia, Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Centro Nacional de Primatas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Departamento de Microscopia Eletrônica. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Departamento de Microscopia Eletrônica. Ananindeua, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências da Saúde. Hospital Universitário João de Barros Barreto. Laboratório de Anatomia Patológica. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências da Saúde. Hospital Universitário João de Barros Barreto. Laboratório de Anatomia Patológica. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.University of Oxford. Department of Pharmacology. Laboratory of Experimental Neuropathology. Mansfield Road, Oxford, United Kingdom.Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFa. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFa-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important

    Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities

    No full text
    corecore