387 research outputs found

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    A comparative three-dimensional neutron depolarization study on RCrO4 oxides (R=Y, Er, Tm, Yb)

    Get PDF
    Three-dimensional neutron depolarization experiments have been performed on RCrO4 (R=Y, Er, Tm, Yb) powder samples in order to gain insight into their magnetic domain structure in the submicrometer range. The temperature evolution of both the average domain size and the net magnetization of each compound has been studied for different applied magnetic fields. The largest average domain size at zero external magnetic field was found in YbCrO4. The effect of an applied magnetic field on the magnetic domain structure is relatively small in ErCrO4 and TmCrO4, when compared to YCrO4 and YbCrO4 where the average domain size even surpasses the average particle size determined by Scanning Electron Microscopy studies.</p

    Absence of zero field muon spin relaxation induced by superconductivity in the B phase of UPt3_3

    Full text link
    We present muon spin relaxation measurements performed on crystals of the heavy fermion superconductor UPt3_3. In zero applied field, contrary to a previous report, we do not observe an increase of the internal magnetic field in the lower superconducting phase (the B phase). Our result gives an experimental upper bound of the magnetic field that could be associated with the superconducting state.Comment: 4 pages, REVTeX 3.0, 2 PostScript figure

    Relationship between the magnetic hyperfine field and the magnetic moment

    Full text link
    Based on experimental data it is shown, for some chosen alloys and compounds of iron, that there is no one unique relationship between the 57Fe-site magnetic hyperfine field, Bhf, and the magnetic moment per Fe atom, m. Instead, the Bhf-m plot consists of several branches, each of them being characteristic of a given alloy or compound. Consequently, the effective proportionality constant (hyperfine coupling constant) depends on the alloy system or compound, and for a given alloy system or compound it depends on the composition or even on the lattice site. Consequently, the scaling of Bhf into the underlying m cannot be done a priopri

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure
    • …
    corecore