429 research outputs found
Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon
We have measured the scintillation and ionization yield of recoiling nuclei
in liquid argon as a function of applied electric field by exposing a
dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy
pulsed narrow band neutron beam produced at the Notre Dame Institute for
Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged
to detect and identify neutrons scattered in the TPC and to select the energy
of the recoiling nuclei. We report measurements of the scintillation yields for
nuclear recoils with energies from 10.3 to 57.3 keV and for median applied
electric fields from 0 to 970 V/cm. For the ionization yields, we report
measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486
V/cm. We also report the observation of an anticorrelation between
scintillation and ionization from nuclear recoils, which is similar to the
anticorrelation between scintillation and ionization from electron recoils.
Assuming that the energy loss partitions into excitons and ion pairs from
Kr internal conversion electrons is comparable to that from Bi
conversion electrons, we obtained the numbers of excitons () and ion
pairs () and their ratio () produced by nuclear recoils from
16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in
LAr-TPC signals due to columnar recombination, a comparison of the light and
charge yield of recoils parallel and perpendicular to the applied electric
field is presented for the first time.Comment: v2 to reflect published versio
Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB
We present results of a dark matter search performed with a 0.6 kg day
exposure of the DAMIC experiment at the SNOLAB underground laboratory. We
measure the energy spectrum of ionization events in the bulk silicon of
charge-coupled devices down to a signal of 60 eV electron equivalent. The data
are consistent with radiogenic backgrounds, and constraints on the
spin-independent WIMP-nucleon elastic-scattering cross section are accordingly
placed. A region of parameter space relevant to the potential signal from the
CDMS-II Si experiment is excluded using the same target for the first time.
This result obtained with a limited exposure demonstrates the potential to
explore the low-mass WIMP region (<10 GeV/) of the upcoming DAMIC100, a
100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure
Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND
Radioactive isotopes produced through cosmic muon spallation are a background
for rare-event detection in detectors, double--decay experiments,
and dark-matter searches. Understanding the nature of cosmogenic backgrounds is
particularly important for future experiments aiming to determine the pep and
CNO solar neutrino fluxes, for which the background is dominated by the
spallation production of C. Data from the Kamioka liquid-scintillator
antineutrino detector (KamLAND) provides valuable information for better
understanding these backgrounds, especially in liquid scintillators, and for
checking estimates from current simulations based upon MUSIC, FLUKA, and
GEANT4. Using the time correlation between detected muons and neutron captures,
the neutron production yield in the KamLAND liquid scintillator is measured to
be . For other isotopes,
the production yield is determined from the observed time correlation related
to known isotope lifetimes. We find some yields are inconsistent with
extrapolations based on an accelerator muon beam experiment.Comment: 16 pages, 20 figure
Recommended from our members
Measurement of geo-neutrinos from 1353 days of Borexino
We present a measurement of the geo--neutrino signal obtained from 1353 days
of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in
Italy. With a fiducial exposure of (3.69 0.16) proton
year after all selection cuts and background subtraction, we detected
(14.3 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U
ratio of 3.9. This corresponds to a geo-neutrino signal = (38.8
12.0) TNU with just a 6 probability for a null geo-neutrino
measurement. With U and Th left as free parameters in the fit, the relative
signals are = (10.6 12.7) TNU and =
(26.5 19.5) TNU. Borexino data alone are compatible with a mantle
geo--neutrino signal of (15.4 12.3) TNU, while a combined analysis with
the KamLAND data allows to extract a mantle signal of (14.1 8.1) TNU. Our
measurement of a reactor anti--neutrino signal =
84.5 TNU is in agreement with expectations in the presence of
neutrino oscillations.Comment: 9 pages, 6 figure
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun
The Sun is fueled by a series of nuclear reactions that produce the energy
that makes it shine. The primary reaction is the fusion of two protons into a
deuteron, a positron and a neutrino. These neutrinos constitute the vast
majority of neutrinos reaching Earth, providing us with key information about
what goes on at the core of our star. Several experiments have now confirmed
the observation of neutrino oscillations by detecting neutrinos from secondary
nuclear processes in the Sun; this is the first direct spectral measurement of
the neutrinos from the keystone proton-proton fusion. This observation is a
crucial step towards the completion of the spectroscopy of pp-chain neutrinos,
as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
Recommended from our members
Search for Solar Axions Produced in Reaction with Borexino Detector
A search for 5.5-MeV solar axions produced in the reaction was performed using the Borexino detector. The Compton
conversion of axions to photons, ; the
axio-electric effect, ; the decay of axions into
two photons, ; and inverse Primakoff conversion on
nuclei, , are considered. Model independent
limits on axion-electron (), axion-photon (), and
isovector axion-nucleon () couplings are obtained: and at 1 MeV (90% c.l.). These limits are
2-4 orders of magnitude stronger than those obtained in previous
laboratory-based experiments using nuclear reactors and accelerators.Comment: 11 pages, 7 figures, submitted to Phys.Rev.
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
Recommended from our members
New experimental limits on the Pauli forbidden transitions in C nuclei obtained with 485 days Borexino data
The Pauli exclusion principle (PEP) has been tested for nucleons () in
with the Borexino detector.The approach consists of a search for
, , and emitted in a non-Paulian transition of
1- shell nucleons to the filled 1 shell in nuclei. Due to the
extremely low background and the large mass (278 t) of the Borexino detector,
the following most stringent up-to-date experimental bounds on PEP violating
transitions of nucleons have been established:
y, y,
y,
y and y, all at 90% C.L. The corresponding upper
limits on the relative strengths for the searched non-Paulian electromagnetic,
strong and weak transitions have been estimated: , and .Comment: 9 pages, 6 figure
- …