40 research outputs found

    Mutual information measures applied to EEG signals for sleepiness characterization

    Get PDF
    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in ß band during MSLT events (. p-value<0.0001). WDS group presented more complexity than EDS in the occipital zone, while a stronger nonlinear coupling between occipital and frontal zones was detected in EDS patients than in WDS. The AMIF and CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients.Peer ReviewedPostprint (author's final draft

    Non-linear dynamic analysis of RR signals in patients with and without excessive daytime sleepiness

    Get PDF
    Linear and non-linear measures applied to heart rate variability (HRV) can be used to quantify modulation of the sympathetic and parasympathetic branches of the autonomic nervous system. RR signals were obtained from the ECG recorded during five Maintenance of Wakefulness (MWT) and Multiple Sleep Latency (MSLT) tests alternated throughout the day from patients suffering sleep disturbance. Two different end-points were considered: Study A, excessive daytime sleepiness (EDS) versus without daytime sleepiness (WDS); Study B, Pre-CPAP versus Post-CP AP (continuous positive airway pressure therapy) in EDS. Measures obtained from spectral analysis (PSD), time-frequency representation (TFR), auto-correntropy (ACORR) and auto-mutual-information function (AMIF) were applied to describe autonomic nervous system activity and RR regularity. Statistical differences between EDS and WDS groups were found in MSLT events. During MSLT, the parasympathetic activity and RR regularity in EDS were affected by CPAP therapy. Non-linear measures obtained from EDS in Post-CPAP differed from Pre-CPAP (p-value<0.05) and tended to be similar to WDS.Peer ReviewedPostprint (published version

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Mutual information measures applied to EEG signals for sleepiness characterization

    No full text
    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in ß band during MSLT events (. p-value<0.0001). WDS group presented more complexity than EDS in the occipital zone, while a stronger nonlinear coupling between occipital and frontal zones was detected in EDS patients than in WDS. The AMIF and CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients.Peer Reviewe

    Non-linear dynamic analysis of RR signals in patients with and without excessive daytime sleepiness

    No full text
    Linear and non-linear measures applied to heart rate variability (HRV) can be used to quantify modulation of the sympathetic and parasympathetic branches of the autonomic nervous system. RR signals were obtained from the ECG recorded during five Maintenance of Wakefulness (MWT) and Multiple Sleep Latency (MSLT) tests alternated throughout the day from patients suffering sleep disturbance. Two different end-points were considered: Study A, excessive daytime sleepiness (EDS) versus without daytime sleepiness (WDS); Study B, Pre-CPAP versus Post-CP AP (continuous positive airway pressure therapy) in EDS. Measures obtained from spectral analysis (PSD), time-frequency representation (TFR), auto-correntropy (ACORR) and auto-mutual-information function (AMIF) were applied to describe autonomic nervous system activity and RR regularity. Statistical differences between EDS and WDS groups were found in MSLT events. During MSLT, the parasympathetic activity and RR regularity in EDS were affected by CPAP therapy. Non-linear measures obtained from EDS in Post-CPAP differed from Pre-CPAP (p-value<0.05) and tended to be similar to WDS.Peer Reviewe
    corecore