29,021 research outputs found

    CNV and nervous system diseases - what's new?

    Get PDF
    Several new genomic disorders caused by copy number variation (CNV) of genes whose dosage is critical for the physiological function of the nervous system have been recently identified. Dup(7)(q11.23) patients carry duplications of the genomic region deleted in Williams-Beuren syndrome, they are characterized by prominent speech delay. The phenotypes of Potocki-Lupski syndrome and MECP2 duplication syndrome were neuropsychologically examined in detail, which revealed autism as an endophenotype and a prominent behavioral feature of these disorders. Tandem duplication of LMNB1 was reported to cause adult-onset autosomal dominant leukodystrophy. PAFAH1B1/LIS1 and YWHAE, which were deleted in isolated lissencephaly (PAFAH1B1/LIS1 alone) and Miller-Dieker syndrome (both genes), were found to be duplicated in patients with developmental delay. Finally, two novel microdeletion syndromes affecting 17q21.31 and 15q13.3, as well as their reciprocal duplications, were also identified. In this review, we provide an overview of the phenotypic manifestation of these syndromes and the rearrangements causing them. Copyright (C) 2009 S. Karger AG, Base

    Glassy Dynamics in a Frustrated Spin System: Role of Defects

    Full text link
    In an effort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similiar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft

    Get PDF
    The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system

    Multipole polarizability of a graded spherical particle

    Full text link
    We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication

    Neutrino masses, leptogenesis and dark matter in hybrid seesaw

    Get PDF
    We suggest a hybrid seesaw model where relatively ``light''right-handed neutrinos give no contribution to the neutrino mass matrix due to a special symmetry. This allows their Yukawa couplings to the standard model particles to be relatively strong, so that the standard model Higgs boson can decay dominantly to a left and a right-handed neutrino, leaving another stable right-handed neutrino as cold dark matter. In our model neutrino masses arise via the type-II seesaw mechanism, the Higgs triplet scalars being also responsible for the generation of the matter-antimatter asymmetry via the leptogenesis mechanism.Comment: 4 page

    Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8

    Full text link
    We provide a detailed analysis of 12 XMM observations of the nearest persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No significant spectral evolution is detected between the observations, therefore we combine the individual observations to increase the signal-to-noise ratio for spectral fitting. The combined spectra are best fitted by the self-consistent p-free disk plus power-law component model with p = 0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio of the p-free disk component to the power-law component being 0.63:0.37 in the 0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of \sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}), and the phase of the accretion disk is close to a slim disk (p = 0.5). We report, for the first time, that an extra power-law component is required in addition to the p-free disk model for ULXs. In super-Eddington cases, the power-law component may possibly result from the optically thin inner region f the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning
    corecore