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Abstract 

 
The objective of this paper is to evaluate the behaviour of a controller designed using a parametric 
Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The 
challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate 
the deflections and vibrations suffered by external appendages in flexible spacecraft while performing 
attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that 
exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing 
requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In 
designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and 
how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a 
flexible spacecraft is considered a close approximation to the real system. During the process of controller 
evaluation, the design process has also been taken into account as a factor in assessing the robustness 
of the system. 
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1. Introduction 

One interest of researchers and engineers resides in the method of obtaining a high level of mitigation in 
the interaction between rigid and deformation modes in flexible spacecraft. The controllers used in these 
vehicles may influence this interaction, which provides an acceptable level of decoupling between system 
modes. Solving these aspects through the use of specific controllers will facilitate the achievement of 
decoupled motions between the two vehicle modes. Therefore, any attitude motion around any spacecraft 
axis will have only minor repercussions on appendage deformation in the spacecraft. Conversely, any 
deformation of flexible appendages of the spacecraft will have a minor repercussion on its attitude 
movement.  
 
One of the major tasks of the Attitude and Control Subsystem in any three axis controlled spacecraft is the 
selection of the controller design method. In this work, we focus on the design and implementation of a 
controller based on the so-called Eigenstructure Assignment (EA) method.  
 
The method of EA has been attractive to researchers and control engineers in recent decades. The 
incipient work presented in [1] may be considered the first effort towards developing this technique. This 
manuscript describes the assignment of eigenvalues and controllability determination applied to multiple-
input/multiple-output (MIMO) systems with state feedback. As the technique has progressed, eigenvectors 
have played a role in influencing the design of the controllers [2]. The relationship between the eigenvalue 
and the eigenvector in obtaining output feedback controllers has been studied in [3]. Furthermore, it is 
worth mentioning the method used in [4] to calculate controllers using both state and output feedback. The 
problem of a lack of toolboxes related to the EA method has been solved by another research group, as 
described in [5] and [6]. This group has developed suitable toolboxes that can be used in controllers 
designed using EA methods. 
 
The EA method has been widely applied to the aerospace segment, as illustrated in the following 
examples. In the field of aeronautics, we wish to acknowledge the work carried out by the GARTEUR 
group, which has implemented various methods to control a transport aircraft [7] and [8]. Additionally, 
technical applications of the EA method to helicopter controller design can be found in [9], where the main 
objective is to achieve acceptable short-term attitude command response and appropriate mode 
decoupling for the vehicle. The technique developed in [10] involves the design of a controller using an EA 
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method in which the objective is to obtain a robust system by taking into consideration the variation of the 
system parameters and the dynamics of a helicopter. Other complex aircraft applications involve the 
control of tailless aircraft using the EA method as described in [11]. 
 
The application of the EA technique has also received a great deal of attention from the space sector. The 
method described in [12] explains the applicability of the EA technique in spacecraft launchers to assess 
the cross-coupling of the system and how this is solved using a suitable controller. Other applications, 
such as those described in [13], involve the design of an adaptive controller by combining a gain 
scheduling approach with the EA method. Recent studies have described the design of a controller for a 
transport aircraft controlled by FBW [14]. 
 
The lack of robustness of the controllers designed via the EA method has been a matter of concern for 
control researchers. This has led to the development of several techniques, as summarised in [15] and 
[16]. Recent work focusing on increasing the robustness of the EA technique by improving the 
orthogonality of the system eigenstructure has appeared in control literature [17]. Last, some researchers 
have compared the possibilities of the EA technique with other methods, such as LQG [18].  
 
Most attitude control problems in flexible spacecraft are related to the passive damping control of the 
structural modes. The flexible modes in these vehicles are often stabilised using collocated sensors and 
roll-off or notch filters in the control channel. The main contributions of this paper are focused on designing 
a static controller K through the application of the EA method and on illustrating the process of obtaining 
suitable decoupling between the structural and orbital modes of the spacecraft. We considered on our 
mathematical model several elastic modes that researchers usually not include in their models. This 
consideration allows us to obtain a more realistic spacecraft model. 

2. Basic Aspects of the Eigenstructure Assignment method 

One of the main requirements for developing and designing a controller using the EA method is detailed 
knowledge of the system modes. Application of the EA method enables the design of both dynamic and 
static feedback controllers applied to state and output feedback respectively. Another requirement is 
related to the behaviour of the system in a closed loop. In applying different techniques to obtain the final 
control law K, the EA method provides at least two important advantages. The first advantage is related to 
the decoupling of the modes; i.e., it minimises the interaction between the two modes. The second 
advantage is related to eigenvector orthogonality, where a higher level of orthogonality in eigenvectors 
corresponds to greater system robustness. Ideal solutions that cover all of the aforementioned aspects are 
of primary interest in this application. While precise decoupling between the orbital and flexible modes is 
required, the designed system must also be robust. 
 
We consider the following linear system with n states, m inputs and p outputs: 
 

= +&x Ax Bu
y = Cx + Du

     (1) 

 
where x  is the vector of states, y  is the vector of measurements and u  is the control vector. The state 

matrix is nxn∈A ℜ , the control matrix is nxm∈B ℜ , the matrix of observable states is pxn∈C ℜ , and the 
matrix that relates inputs and outputs is pxn∈D ℜ . 
 
The eigenstructure is represented by the eigenvalues and eigenvectors. The eigenvalues represent the 
system modes and the eigenvectors provide information about the existing system modes. The linear 
algebra associated with the system is expressed as follows: 
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where the eigenvalues are given by iλ , the right eigenvector is given by a set of iv  and the left 

eigenvector is given by a set of T
iw . The set of eigenvectors and eigenvalues is expressed in matrix form 

as follows: 
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The time response of the system in equation (1) is expressed as follows: 
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This expression shows the existing relation between the time response of the system and its eigenvalues, 
the right and left eigenvectors, system inputs and initial conditions. In addition, the homogeneous 
component is given by the following equation: 
 

( ) ( )
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t T
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=

= ∑y C v w x    (5) 

 
This term denotes the transient response of the system, which is characterised by the eigenvalues, the 
right eigenvectors and the product of the left eigenvectors and the initial condition ( )0x . In expression (5) 

the term designated as ( )0T
i iα = w x  is a scalar, and the relation given by ( ) it

i it eλβ α=  represents the 
mathematical system modes. The mathematical modes have corresponding system modes, which for 
flexible spacecraft are called orbital and flexible modes. The real system shows physical coupling between 
the system modes. In expression (5), the system coupling is given by the value of the product of iCv . 
 
The control problem in this paper is focused on obtaining a static controller given by K(mxp). Assuming that 
whole states are available, the control law can be expressed as follows: 
 

= −u Ky = -KCx     (6) 
 
Several techniques have been developed to design suitable controllers according to a desired 
eigenstructure for the closed loop system. In general, the techniques used are focused on parametric and 
low sensitivity eigenstructure assignment. The first method considers the value of the eigenvalues in order 
to establish the best method to solve the problem. The second method addresses the problem through a 
recursive approach, taking the robustness of the system as the main objective. For the purpose of this 
paper, it is interesting to consider a parametric eigenstructure assignment and to perform some 
robustness testing to validate the controller design versus the requirements. From equations (1) and (6) 
the closed loop system, considering 0=D , is given by the following equation: 
 

( )= +&x A BKC x
y = Cx

   (7) 

 
 
To assign the closed loop eigenstructure, the method defines a desired eigenstructure as a set of desired 
eigenvalues dΛ  and desired eigenvectors dV , which is given by the following equation: 
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The output feedback problem is to find a real matrix K such that the eigenvalues of ( )+A BKC  include 

the desired eigenvalues diλ  as a subset of the system eigenvalues and the eigenvectors are as close to 

the desired eigenvectors div  as possible. 
 
For any pair of desired closed loop eigenvalues iλ  and their associated eigenvectors iv , equation (7) can 
be expressed as follows:  

( ) i i iν λν+ =A BKC    (9) 
 

where the system eigenvectors are ( ) 1
i i iν λ ν−= −I A BKC . The allowable subspace can be defined by 

the columns of the matrix ( ) 1
iλ

−−I A B . The best achievable eigenvector may then be obtained by 
projection of the desired eigenvector onto the allowable subspace. From equation (9), the state matrix for 
the closed loop system may be expressed as follows: 
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  (10) 

This may be represented for a non trivial solution as a null space given by the following equation: 
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The null space is known as the achievable vector space. Thus, all achievable eigenvectors that 
correspond to the desired closed loop eigenvalues must lie in the subspace spanned by the columns of 
[ ]iλ−A I B . Therefore, the desired eigenvectors can be achieved exactly if they belong to this 
subspace and if there exists a feedback matrix K. 
  

From equation (10): i iν=w KC     (12) 
This vector, called the right parameter vector [6], is related to the computation of the controller as follows: 
 

( ) 1−K = W CV    (13) 
 

3. Mathematical Model for Flexible Vehicles 
 
We have developed a mathematical model based on the Newton-Euler dynamic equations. This model 
considers all possible perturbations affecting the movement of the spacecraft along with the inertia 
moments for rigid body, flexible panels and reaction wheels. The mathematical model has been developed 
using three reference frames. The first is the Earth-Centred Inertial (ECI) reference frame. The second is 
an orbit reference frame, located in the mass centre of the spacecraft. In this frame, the z-axis points to 
the earth centre, the x-axis is tangential to the orbit, and the y-axis is perpendicular to the orbit plane. The 
attitude manoeuvres are related to the rotations around x, y and z axes, called roll, pitch and yaw, 
respectively. These rotations are identified as attitude modes for the purpose of the controller design 
through the EA method. The final frame is the body reference frame located at the centre of mass of the 
satellite, coincident with the principal axis of inertia. 
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Potential and kinetic energies are considered in the derivation of the mathematical model. Additionally, the 
environmental perturbations are included in the model, along with the necessary forces applied by 
actuators, by application of Hamilton’s principle to the system Lagrangian: 
 
                                          = −L LL E V  

nc
d
dt

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠&
L L- Q
u u

 (14) 

 
LE  and LV  are the kinetic and potential system energies, respectively, and ncQ  are the non conservative 

forces applied to the system. While obtaining potential and kinetic energies, the influence of the rigid and 
flexible part of the spacecraft must be considered. 
 
The elastic movements of the solar panels with respect to the body frame have been modelled by the 
assumed modes method. The elastic deformation of the panels is modelled as a function of time and 
several generalised coordinates. The displacements of the solar panels must satisfy the geometric 
boundary conditions imposed on the system to avoid structural component failure. The solar panels can 
be considered geometrical rectangular plates, and their modes of vibration can be those of clamped-free 
and free-free beams.  
  
The elastic displacements at any point on the solar panels are discretised by a series of admissible 
functions ( ),iw x t  and ( ),i y tυ , and their associated time-dependent generalised coordinates are 

represented by ( )iq t  for longitudinal bending and ( )ir t  for torsional deformations about the longitudinal 
axis:  
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The graphical representations of the solar panel bending depicted in Figure 1 show the bending at any 
point. From this figure, we can confirm that the solar panel may bend in two dimensions according to the 
functions described in equation (15). Figure 2 shows the bending of a single solar panel. 
 

 
 
 
 
 

Figure 1: Graphical representation of solar panel bending on the spacecraft model. 
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(a) 

 

 
(b)  

Figure 2: Elastic displacement of a single solar panel. Vibration modes: (a) mode 1-1, (b) mode 2-2. 

 
Analysing the energies needed to develop the mathematical model, the components of the kinetic energy 
can be described as those related to the rigid component of the spacecraft motion, together with the 
flexion and torsional effects of solar panel bending, as follows: 
  

_ _ _L c Rigid c Flexion c Torsion= + +E E E E    (16) 
 

This term expressed in matrix form represents the kinetic energy for the entire system, including the rigid 
body contribution and elastic displacements of solar panels, as follows: 
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The total potential energy of the spacecraft is the contribution of the gravitational effect [19] and the elastic 
potential energy. The gravitational effect of the system is given by the following equation: 
 

G
m

dm
R

µ= − ∫V     (18) 

 
The elastic motions for flexion of solar panel are expressed as follows: 
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The solar panel torsion is given by the following equation: 
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The total contribution to the potential energy is expressed as follows: 
 

( )( ) ( )( )
2 22 22 2

_ _
1 1

2
2 2

1

1 1
2 2
1 1
2 2

L D Flexion D Torsion i X i
i i

L Fi i Ti i
i

E E q EI d r GK d

K q K r

φ ξ ξ ψ ξ ξ
= =

=

′′ ′= + = +

⎡ ⎤= +⎢ ⎥⎣ ⎦

∑ ∑∫ ∫

∑

V

V
  (21) 

 

[ ]

( )
( )

( )

2
0

2
0

2
0

1 1 2 2 11

11

22

22

4 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Y Z

X Z

Y X

L F

T

F

T

I I
I I

I I
q r q r qK

rK
qK
rK

φω
θω
ψω

φ θ ψ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

V
 

 
 

Applying Hamilton’s principle to the Lagrangian L and defining a generalised coordinate vector u  using 
a set of attitude angles together with the corresponding deflections of the solar panels, we can obtain a 
non linear mathematical model, represented as follows: 
 

nc+ + =&& & mMu Gu K u Q                                                           (22) 
 
The elements of the matrices expressed in expanded form for the governing equations of motion are the 
following:  
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The M matrix in expression (22) represents the mass generalised matrix, which includes the inertia 
moments for rigid body, solar panels and reaction wheel actuators, the generalised moments for solar 
panel deformations and the generalised mass of the solar panels. The gyroscopic matrix G includes the 
results for the calculated moment of inertia. Finally, the stiffness matrix Km includes the effects of angular 
movement around the Earth and the damping ratio considerations. The internal damping of the structure is 
integrated in the mathematical model by adding any suitable value to the mathematical model. The 
generalised forces Qnc include the non conservative forces applied to the spacecraft with relevant 
repercussions on attitude movement. It should be noted that the actions from internal actuators, such as 
the reaction wheels, are considered by their angular moments. Therefore, reaction wheel actions, together 
with external actions, complete the system model, leading to a complete definition of Qnc, as follows: 
 

( )0
T

x y Z n m−
⎡ ⎤= ⎣ ⎦ncQ T T T    (23) 

 
The vector u represents the vector of generalised coordinates, which are selected to match the objective 
of the controller design, as follows:  

             
[ ]1 1 2 2

Tq r q rφ θ ψu =            (24) 
 

The mathematical model in equation (22) represents the non linear model of the system; i.e., it represents 
the real model. Figure 3 shows the process followed to obtain the linear model from the non linear system 
and how it is used to validate the controller. The nonlinear model is linearised around an equilibrium point, 
considering in this case a fine pointing of the spacecraft to Earth. This requirement leads to the linear 
model of the system. The relation of the system matrix described in equation (22) with the linear model is 
expressed as follows: 
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Therefore, the linear system in equation (1) becomes: 
 

= +&x Ax Bu
y = Cx

            (26) 

 
Assuming that the system is controllable and observable and that all states are accessible, the required 
control law is given by equation (6). In this case, the output feedback system becomes a state feedback 
system. A particularity of the system in equation (26) is related to the state matrix A. This matrix is 
considered ill-conditioned due to the nature of its elements, particularly those related to solar panel 
vibration. This characteristic may affect the robustness of the system. A state vector represented by the 
Euler angles and elastic displacements of the solar panels along with their first derivatives is given as 
follows: 
 

1 1 2 2 1 1 2 2

T
q r q r q r q rφ θ ψ φ θ ψ⎡ ⎤= ⎣ ⎦

& & & & & & &x             (27) 

 
 
 

 
Figure 3: Modelling process. 

 

4. Modal Analysis 

The modal analysis performed on the open loop system reveals the main characteristics of the system in 
terms of natural frequency and damping. This open loop analysis allows the classification of the spacecraft 
modes into the following two categories: orbital and deformation. This trade-off is performed with the 
nonlinear system linearised around the equilibrium point. Any motion around the equilibrium point is 
considered an attitude misalignment that must be corrected to obtain correct attitude pointing. 
 
The data taken from open loop system analysis are shown in Table 1, including the system eigenvalues 
for different system modes. These data are obtained for a general spacecraft with a solar panel built with 
the parameters and dimensions belonging to a spacecraft of minisat type, shown in Table 2. These data 
show a spacecraft that is unstable because of the external configuration of the solar panels. 
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 Dynamics Eigenvalues Damping Natural Frequency 
(rad/sec) 

O
rb

ita
l 

M
od

es
 Roll ± 2.91e-002 1.00e+000 2.91e-002 

Pitch 0 ± 3.24e-002i 0.0 3.24e-002 

Yaw -6.15e-004 ± 3.48e-002i 1.76e-002 3.48e-002 
B

en
di

ng
 

M
od

es
 Flexion 0 ± 2.77e+001i 0.0 2.77e+001 

Torsion 0 ± 4.00e+002i 0.0 4.00e+002 

 

Table 1: Open loop system data. 

 

Parameter Notation Value 

Solar panel length L 2 m 

Appendage Stiffness EI 1.3 e+09 

Hub dimensions a 0.6 x 0.6 x 0.6 m 

Moments of Inertia Ix,Iy,Iz 14.11, 12.072, 12.60 Kg.m2 

 

Table 2: Parameters of the simulation model. 

 
The stability of the spacecraft depends primarily on the moment of inertia. This is conditioned by the 
spacecraft configuration, i.e., the position of the solar panels with respect to the main rigid body of the 
spacecraft. According to the data in Table 1, the pitch and yaw eigenvalues in this system are stable, 
whereas the roll eigenvalues are located on the right semi-plane of the complex plane.  
 

5. Requirements for the Controller Design 

The problem of attitude manoeuvres is submitted to the design of a regulator where attitude angles and 
attitude rates lead to a known reference. In rigid spacecraft, this implies a movement of the spacecraft 
structure in a coordinated manner. However, in flexible spacecraft, the attitude motion to obtain a known 
position reference may cause the excitation of vibration modes belonging to the solar panels. The 
alleviation of vibration modes to avoid potential material stress is the main purpose of attitude 
manoeuvres. This can be obtained via a controller that enables decoupling of the orbital spacecraft motion 
from the elastic deflections of the solar panels. 
 
The EA method implies the choice of the closed loop eigenvalues and eigenvectors in order to determine 
the performance of the closed loop system. The following three performance requirements must be 
identified to design the controller: settling time, overshoot and response time. These system 
characteristics must be contained in the closed loop desired eigenvalues. Table 3 shows the decoupling 
criteria followed to obtain real decoupling. The data included in this table affect directly the desired closed 
loop eigenvectors [20], [21]. 
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Orbital 
Manoeuvres Required Decoupling 

Roll Yaw Flexion Torsion 
Pitch - - Torsion 
Yaw Roll Flexion Torsion 

 

Table 3: Decoupling criteria for system modes. 

The decoupling pursued in this paper involves the separation of yaw and pitch manoeuvres from flexion 
and torsion deformations in solar panels. According to the spacecraft configuration, roll manoeuvres cause 
flexion deformation in panels because of the inherent coupling that exists between the roll and yaw axes. 
 
With respect to the parametric behaviour of the closed loop system, the criteria followed are based on 
restricting the overshoot by damping in the system. This requirement affects the closed-loop eigenvalue 
and the system response time, which under these circumstances is not very fast. The proposed design 
procedure uses the following steps: 
 

- Identification of the open loop modes and determination of the system stability. 
- Identification of the coupling between different system modes. 
- Determination of the desired closed loop eigenstructure, eigenvalues and eigenvectors. 
- Simulation of the closed loop system with the controller K. 

 
To obtain the desired eigenstructure, it may be necessary to iterate between the last two steps of the 
procedure to obtain the most suitable controller. 
 

6. Simulations 

Based on the mathematical model presented previously, several approximations to a final controller have 
been performed. One of the major concerns is the behaviour of the bending modes (flexion and torsion) 
when the spacecraft is performing any attitude manoeuvre. The coupling between flexion and orbital 
modes may be determined by system modal analysis applied to the closed loop system. Although the 
potential coupling between the system modes may be understood by splitting the MIMO system into three 
single-input/single-output (SISO) channels, this solution does not represent the inherent coupling of the 
real system. The bending modes appear at frequencies of approximately 27 rad/sec and 400 rad/sec. 
  
The EA method of designing the controller uses with two eigenstructures. One is the called the desired 
eigenstructure, which corresponds to the behaviour of the closed-loop system after the controller has been 
set up in the loop. The other is called the obtained eigenstructure, which is the actual eigenstructure 
obtained after application of the EA method. The desired eigenstructure is characterised by the required 
eigenvalues and eigenvectors. At times when it is not possible to obtain the desired eigenstructure 
directly, a trial-and-error process must be used to obtain suitable results for the controller. Table 4 lists the 
desired and obtained eigenvalues and their relationship with system modes. The required desired 
eigenvalues are selected to give an appropriate damping and time response to the orbital modes, while 
the deformation modes are required with the same open loop eigenvalue. This is based on the low 
probability of exciting these modes in performing attitude maneuvers and it is considered as a design 
strategy on eigenstructure assignment. A close match is observed between the desired and obtained 
eigenvalues after the iterative process. 
 

Dynamic Modes Desired Eigenvalues Obtained Eigenvalues Damping Natural Frequency 
(rad/sec) 

Roll -6.2e-002 ± 3.5e-002i -6.1457e-002 ± 3.4821e-002i 8.70e-001 7.06e-02 
Pitch -8.7e-002 ± 3.2e-002i -8.6736e-002 ± 3.2408e-002i 9.37e-001 9.26e-02 
Yaw -2.9e+000 ± 2i -2.9122e+000 ± 2.0000e+000i 8.24e-001 3.53 

Flexion 0 ± 2.7746e+001i 0 ± 2.7746e+001i 0 2.77e+001 
Torsion 0 ± 4.0000e+002i 0 ± 4.0000e+002 0 4.00e+001 

 

Table 4: Desired eigenvalues and the values obtained after the iterative process. 



 12 

The pole-zero map depicted in Figure 4 shows the position of the eigenvalues in the complex plane for 
both open and closed loop systems. It is interesting to note that some eigenvalues move to new positions 
according to the desired eigenstructure, whereas other eigenvalues stay in the same position, as in the 
open loop system. Specifically, the flexion and torsion eigenvalues are located in the same position as in 
the open loop system. This result does not imply any problem in stability because of the difficulty in 
exciting such frequencies once the system has been decoupled. 
 

 
 

 
 

 
Figure 4: Open and Closed System Eigenvalues. 

 
The obtained eigenstructure is completed by the closed loop eigenvectors. In this type of system, the 
eigenvectors provide information about the coupling of the system modes and represent the vibration 
modes in modal coordinates. Other aspects, such as the orthogonality of the eigenvectors, are related to 
the system robustness [17]. 
  
In order to verify whether the main requirement has been imposed on the system, i.e., whether the system 
decoupling has been obtained as desired, a step simulation has been performed for both linear and non-
linear systems. Figure 5 shows the results of these tests. The graph shows that the behaviour of linear 
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and non-linear systems is similar for different correction manoeuvres. Figure 5 also shows that the 
decoupling between the orbital and bending modes has been obtained. Thus, a roll manoeuvre that is 
decoupled from the flexion mode in the real system will not cause solar panel bending. This situation is 
also applicable to solar panel bending in the transverse motion. A relative decoupling of the orbital modes 
has also been obtained with the desired eigenstructure. Therefore, a motion around any axis of the 
spacecraft induces only light movement in the remaining axes. This situation is not of significant concern 
due to the time response obtained for the closed loop system. 
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Figure 5: Linear and non-linear step response. 
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7. Robustness Analysis by LFT 

Any change in the dynamics or internal parameters of the spacecraft may represent a lack of robustness. 
It is also necessary to consider the action of non-modelled dynamics and its uncertainty on the parameters 
of the system. All of these factors affect the robustness and tolerance of the system to both internal and 
external disturbances. A linear fractional transformation (LFT) has been used to model the system with the 
aforementioned disturbances. Figure 6 shows the LFT model in which ∆  represents the system 
uncertainty. In this LFT representation, the controller K has been obtained using the EA process. It must 
be considered that the EA method applied to the MIMO system can be made potentially robust by defining 
suitable locations for the closed loop eigenvalues and selecting the eigenvector to ensure robustness. 
 

 

 
 
 
 

 

 

Figure 6: Linear fractional model. 

 
The nominal performance, robust stability and robust performance are obtained by weighting functions, 
which allow the estimation of the upper and lower limits for all frequencies in the system. Figure 7 depicts 
the system behaviour with respect to robustness performance and stability. Both response behaviours 
perform below the critical value of one, which demonstrates that the system shows robust performance for 
all of the frequencies considered. The frequency response corresponding to the robustness stability shows 
a peak measuring approximately 0.9 located around the flexion frequency. This response is appropriate 
for the nature of the system, and the frequency belongs to the first vibration mode (flexion mode). 
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Figure 7: Robustness performance and Robustness Stability. 

8. Conclusions 

In this paper, we have addressed the problem of controlling a flexible spacecraft with solar panels as the 
external appendages. As described above, the main objectives of the controller are to stabilize the open-
loop system and to obtain suitable decoupling between spacecraft. Finally, the influence of these aspects 
on system robustness has also been considered. The application of the EA method for controller design 
resulted in a stable system with optimum decoupling between system modes. The EA method, however, 
did not provide intrinsic robustness to the system. This factor needs to be carefully analysed further. A µ-
analysis has been performed in this study and showed acceptable system behaviour throughout the entire 
considered frequency range. The EA method is classified as a modal process in the design of controllers. 
Thus, it is very important to have a precise mathematical model of the system to obtain suitable results. 
The suitability of any EA method depends largely on the application and a thorough knowledge of the 
system. This has been achieved through a precise selection of the closed loop eigenvalues and by the 
results obtained for the closed loop eigenvectors. It is important to select an appropriate group of 
eigenvalues to overcome pole placement problems. The role of eigenvectors in these types of applications 
results in adequate closed loop system performance.  
 
Further work in applications using the EA method is needed to address the problem of orthogonality of 
eigenvectors because this characteristic of the systems is directly related to system robustness. 
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ILLUSTRATIONS 
 

Figure 1: Graphical representation of solar panel bending on the spacecraft model. 

Figure 2: Elastic displacements of a single solar panel. Vibration modes: (a) mode 1-1, (b) mode 2-2. 

Figure 3: Modelling process. 

Figure 4: Open and Closed loop system eigenvalues. 

Figure 5: Linear and non-linear step responses. 
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Figure 6: Linear fractional model. 

Figure 7: Robust performance and Robust Stability. 

 
 
LIST OF NOTATIONS 
 
 
A= State Matrix 

B= Control Matrix 

C= Output Matrix  

D= Input-Output Matrix 

EL = Kinetic Energy 

G = Stiffness Modulus 

G = Gyroscopic Matrix 

IX, IY, IZ = Moments of Inertia  

,Xi YiJ J = Generalised moment of inertia 

Km = Stiffness Matrix 

K = Gain Controller 

K = Poisson’s ratio 

L = Lagrangian 

M = Mass Matrix 

mi  = Generalised Mass for Solar Panels 

Qnc = Nonconservative generalised forces 

,Xi YiQ Q  = First-order generalised moment. 

qi = Longitudinal generalised coordinate 

ri = Transversal generalised coordinate 

u = Generalised Coordinates Vector 

ru = Control Signal 

V = Right Eigenvector Matrix 

W = Left Eigenvector Matrix 

W = Right Parameter Matrix 
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VL = Potential Energy 

( ), ,iw x y t  = Elastic displacement 

iw = Right Parameter Vector 

ω0 = Spacecraft angular speed 

x  = State Vector 

y  = Output Vector 

Λ = Eigenvalue Matrix 

λdi= Desired eigenvalues 

vdi= Desired eigenvectors 

iv  = Right Eigenvectors 

iw = Left Eigenvectors 

φ,θ,ψ = Roll, pitch and yaw angles 

φi(x)= Longitudinal shape factor 

Ψi(x)= Transversal shape factor 

 


