268 research outputs found

    Effect of acoustic black hole parameters on vibration suppression of rectangular plate

    Get PDF
    The acoustic black hole has the ability to gather and manipulate the flexural wave in the structure, and can be used to achieve vibration suppression of the structure. A group of FEM models for the vibration analysis of the rectangular plate embedded with acoustic black holes were established in this paper. Four monitoring points on the ABH plate were selected to calculate their vibration velocity response in 100 Hz-3 kHz frequency interval. In order to study the effects of acoustic black hole geometric parameters and damping layer geometric parameters on the vibration response of the ABH plate, 15 combinations of different parameters of the maximum ABH diameter, the truncated thickness of the ABH, the power index of the ABH, and the damping layer thickness, the maximum diameter of the damping layer were selected to calculate the vibration velocity response of the four monitoring points. The calculation result can help us understand the effects of acoustic black hole geometric parameters and damping layer geometric parameters on the vibration suppression of rectangular plate

    A Case Study on Foamy Oil Characteristics of the Orinoco Belt, Venezuela

    Get PDF
    With a current recovery of less than 11%, the Orinoco Belt in Venezuela still contains potentially more than 1.3 trillion barrels of reserves of “three highs, one low” oil at a depth of 100 to 1500 m. 5 joint projects and one project of Petroleos de Venezuela SA are making plans to improve oil recovery in the area. So it is important for them to have a thorough knowledge of foamy oil characteristics. This reservoir has a peculiar behavior called as a foamy phenomenon. In order to characterize the properties of the foamy oil, this paper discussed unconventional test methodology and the detailed suite of laboratory procedures including PVT and pressure depletion tests used to examine the Orinoco heavy oil. The results showed substantial differences in characteristics of foamy oil and conventional oil studied, not only in terms of PVT behavior but also in terms of the production performance during pressure depletion tests. The foamy oil compressibility was between 10-120×10-4 mPa-1, which was obviously higher than that of conventional oil. Differential liberation experiments of the oil, with obvious high formation volume factor, stable GOR, and low density showed a strong tendency to foam below the bubble point. Other notable observations were that more efficient oil recovery was achieved at high depletion rates while less free gas was produced.Key words: Foamy oil; Unconventional tests; The Orinoco Belt; PVT; Pressure depletion test

    CGraph : a correlations-aware approach for efficient concurrent iterative graph processing

    Get PDF
    With the fast growing of iterative graph analysis applications, the graph processing platform has to efficiently handle massive Concurrent iterative Graph Processing (CGP) jobs. Although it has been extensively studied to optimize the execution of a single job, existing solutions face high ratio of data access cost to computation for the CGP jobs due to significant cache interference and memory wall, which incurs low throughput. In this work, we observed that there are strong spatial and temporal correlations among the data accesses issued by different CGP jobs because these concurrently running jobs usually need to repeatedly traverse the shared graph structure for the iterative processing of each vertex. Based on this observation, this paper proposes a correlations-aware execution model, together with a core-subgraph based scheduling algorithm, to enable these CGP jobs to efficiently share the graph structure data in cache/memory and their accesses by fully exploiting such correlations. It is able to achieve the efficient execution of the CGP jobs by effectively reducing their average ratio of data access cost to computation and therefore delivers a much higher throughput. In order to demonstrate the efficiency of the proposed approaches, a system called CGraph is developed and extensive experiments have been conducted. The experimental results show that CGraph improves the throughput of the CGP jobs by up to 2.31 times in comparison with the existing solutions

    Detection of human telomerase reverse transcriptase mRNA in cells obtained by lavage of the pleura is not associated with worse outcome in patients with stage I/II non–small cell lung cancer: Results from Cancer and Leukemia Group B 159902

    Get PDF
    ObjectivePrevious studies suggest that cytologic analysis of cells obtained by lavage of the pleural surfaces at the time of resection of non–small cell lung cancer can identify patients at risk for recurrence. Because telomerase gene expression has been associated with worse outcome in non–small cell lung cancer, we hypothesized that identification of cells obtained from pleural lavage that express telomerase would identify patients at risk for recurrent disease.MethodsPatients with presumed non–small cell lung cancer underwent thoracotomy with curative intent. Cells obtained by lavage of the pleural surfaces were analyzed for telomerase catalytic subunit human telomerase reverse transcriptase mRNA expression using reverse transcriptase polymerase chain reaction.ResultsA total of 194 patients with stage I/II non–small cell lung cancer had adequate samples, and median follow-up was 60 months (17-91 months). By using Cox models, no statistical differences were found between human telomerase reverse transcriptase–negative and positive patients in disease-free survival (hazard ratio, 1.28; 95% confidence interval, 0.85-1.94; log-rank test, P = .2349) or overall survival (hazard ratio, 1.13; 95% confidence interval, 0.72-1.79; log-rank test, P = .5912)ConclusionsDetection of human telomerase reverse transcriptase in cells obtained from pleural lavage of patients with stage I/II non–small cell lung cancer does not identify patients at risk for recurrent disease

    Understanding Local Bonding Structures of Ni-Doped Chromium Nitride Coatings through Synchrotron Radiation NEXAFS Spectroscopy

    Get PDF
    CrN has widespread applications as protective coatings, for example, in aircraft jet engines whereby their high hardness and good oxidation resistance render metal components resistant to harsh operating conditions. Alloying elements are commonly incorporated (doped) into the coatings to further enhance their thermomechanical properties. However, the effect of dopants on the electronic properties and their roles in modifying the grain boundary configurations remain unclear. Lack of such critical knowledge has hindered the development of design strategies for high performance CrN-based coatings. To address this challenging issue, in the present study near-edge X-ray absorption fine structure (NEXAFS) investigations of Cr1-yNiyN coatings at the Cr L3,2-edge (570-610 eV), Ni L3,2-edge (840-890 eV), and N K-edge (380-450 eV) regions were conducted using synchrotron radiation soft X-ray (SXR) spectroscopy in both Auger electron yield (AEY) and total fluorescence yield (TFY) modes. The chemical states in CrNiN were found to change with the increase of Ni content, manifested as a small chemical shift and moderate change of shapes of various absorption edges. The CrN grain size also became smaller with increasing Ni concentration. These findings help improve our understanding of local bonding structures, which could potentially lead to improved coating designs for highly demanding applications

    Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas

    Get PDF
    The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma
    • …
    corecore