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Abstract

With the fast growing of iterative graph analysis appli-
cations, the graph processing platform have to efficiently
handle massive Concurrent iterative Graph Processing
(CGP) jobs. Although it has been extensively studied to
optimize the execution of a single job, existing solutions
face high ratio of data access cost to computation for the
CGP jobs due to significant cache interference and mem-
ory wall, which incurs low throughput. In this work,
we observed that there are strong spatial and temporal
correlations among the data accesses issued by different
CGP jobs because these concurrently running jobs usu-
ally need to repeatedly traverse the shared graph struc-
ture for the iterative processing of each vertex. Based on
this observation, this paper proposes a correlations-aware
execution model, together with a core-subgraph based
scheduling algorithm, to enable these CGP jobs to effi-
ciently share the graph structure data in cache/memory
and their accesses by fully exploiting such correlations.
It is able to achieve the efficient execution of the CGP
jobs by effectively reducing their average ratio of data
access cost to computation and therefore delivers a much
higher throughput. In order to demonstrate the efficiency
of the proposed approaches, a system called CGraph
is developed and extensive experiments have been con-
ducted. The experimental results show that CGraph im-
proves the throughput of the CGP jobs by up to 2.31
times in comparison with the existing solutions.

1 Introduction

In the past decade, iterative graph analysis has be-
come increasingly important in a large variety of do-
mains [7, 28], which need to iteratively handle the graph
round by round until convergence. Due to the increas-
ing need of analyzing graph-structured data (e.g., social
networks and web graphs), many iterative graph algo-
rithms run as concurrent services on a common platform.
These Concurrent iterative Graph Processing (CGP) jobs
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Figure 1: Information traced on a social network

are usually executed on the same graph simultaneously
so as to analyze it for various information. For exam-
ple, facebook [2] uses Giraph [14] to handle a large num-
ber of CGP jobs (such as the variants of pagerank [23],
SSSP [22] and k-means [13]) daily over the same graph
(or its different snapshots) to provide various information
for different products, respectively. Figure 1(a) gives the
number of the CGP jobs traced over a large China social
network and shows that more than 20 CGP jobs may be
submitted to the common platform to concurrently ana-
lyze the same graph in an iterative way at the peak time.

Many systems are recently proposed to support large-
scale graph analytics. They try to fully utilize high se-
quential memory bandwidth [19, 24, 25], improve data
locality [11, 30, 33, 35], spare the redundant data ac-
cesses [6, 27], and reduce the memory consumption [31,
32], etc. Despite of these research efforts, there is a ma-
jor challenge for the efficient execution of the CGP jobs.
When a massive number of CGP jobs are running on the
same underlying graph using the existing systems, each
individual CGP job separately accesses the shared graph
structure along different graph paths, resulting in repeat-
edly loading of the same data into the cache at different
time by different jobs. They suffer from expensive data
access overhead due to the factors such as serious cache



interference and limited bandwidth. As the result of high
ratio of data access cost to computation in graph algo-
rithm, the current graph processing systems experience
low throughput. This paper investigates whether and how
we can improve the throughput of the CGP jobs.

In practice, the CGP jobs usually need to repeatedly
traverse the shared graph and iteratively process each
vertex for their own purpose. It suggests that there are
a large number of intersections among the graph struc-
ture data being accessed by these jobs in each iteration,
which we call the spatial correlation of data accesses. In
addition, the partition of the shared graph structure may
need to be accessed by multiple jobs within a short time
interval, which we call the temporal correlation of data
accesses. These two correlations indicate that there ex-
ist significant redundant data storing and accessing cost
in the jobs, which leaves us good opportunities to reduce
these unnecessary costs and improve the throughput.

Based on the observation, we propose a data-centric
Load-Trigger-Pushing (denoted by LTP) model to im-
prove the throughput of CGP jobs by fully exploiting the
correlations of their data accesses. It decouples the graph
structure data from the vertex state associated with each
job. Within each iteration, the graph structure partitions
shared by multiple CGP jobs are streamed into the cache
and trigger the related jobs to concurrently process the
data, followed by vertex state pushing for convergence.
In this way, many accesses to the shared graph parti-
tions can be amortized by multiple CGP jobs through
handling them along a common order. The consump-
tion of cache/memory is also reduced since a single copy
of the graph structure data is used to serve multiple jobs
at the same time. It indicates higher throughput thanks
to much lower data access cost. To further improve the
throughput, a core-subgraph based scheduling algorithm
is designed to maximize cache utilization by judiciously
arranging the loading order of the partitions.

To demonstrate the efficiency of our method, we
conducted the extensive experiments with our system
CGraph and compare its performance with those of three
cutting-edge graph processing systems, i.e., CLIP [6],
Nxgraph [11] and Seraph [31, 32]. Experimental results
show that CGraph improves the throughput of the CGP
jobs by up to 3.29 times, 4.32 times and 2.31 times over
CLIP, Nxgraph and Seraph, respectively.

The remainder of this paper is organized as follows.
Section 2 discusses the the motivation of this work. Sec-
tion 3 outlines our approach, followed by experimental
evaluation in Section 4. Section 5 gives a survey of re-
lated work. Finally, we conclude this paper in Section 6.

2 Problem Presentation and Motivation

A common characteristic of an iterative graph process-
ing job is that the operations are usually operated on

two types of data: graph structure data and vertex state
data. The graph structure data contains the edges be-
tween vertices and the information associated with each
edge, whereas the vertex state data (e.g., ranking scores
for PageRank [23], and the distances from the source ver-
tex for SSSP [22]) is computed by its tasks in a paral-
lel way within each iteration and typically consumed in
the next iteration. The graph structure data always oc-
cupies a majority of the memory, as compared with the
vertex state data (i.e., job-specific data), and its propor-
tion varies from 71% to 83% for different datasets [32].
As evaluated in Figure 1, the graph structure data is usu-
ally shared by multiple CGP jobs. However, in exist-
ing graph processing systems, these CGP jobs handle
the shared graph in an individual manner along different
graph paths, incurring low throughput for many redun-
dant accesses to the shared graph and cache interference.

2.1 Data Access Problems in the CGP jobs

In order to investigate the level of the inefficiency of the
individual data accessing manner of the CGP jobs, we
conducted the benchmark experiments to evaluate the ex-
ecution time of different number of CGP jobs over Ser-
aph [31, 32] on uk-union [3]. The hardware platform and
benchmarks are the same as those described in Section 4.

From Figure 2(a), we made two observations. First,
the concurrent way performs better than the sequential
way of executing the jobs one by one. As observed in
the experiments, it is because that the execution time of
graph processing job is dominated by the data access cost
and the CPU is always underutilized. Seraph is able to
utilize the CPU in a better way by concurrently executing
the jobs and also allowing them to share the in-memory
graph structure data for less average data access cost.
When there are eight jobs, the total execution time of the
concurrent execution way is about 60% of the sequential
way. Note that the total execution time of the concur-
rent way is the maximum value of these jobs’ execution
time, while it is the sum of those of all jobs for the se-
quential way. Second, the average execution time of each
job, however, is significantly prolonged as the number of
jobs increases. It is almost doubled when the number of
jobs increases from four to eight, because of higher data
access cost for each vertex processing.

Figure 2(b) shows the average data access time of the
jobs over Seraph when the number of jobs increases. We
can observe that the increment of the number of jobs
leads to the significant rise of data access cost. It is be-
cause that the shared graph partitions are handled by the
CGP jobs in an individual manner along different graph
paths. As the number of the CGP jobs increases, more
copies of the same data need to be created and loaded
into the cache by the jobs at different time. Thus, more
redundant data accesses are issued by the CGP jobs and
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Figure 2: Normalized performance of each CGP job over
Seraph against that of the sequential way

it also incurs more serious cache interference due to the
fact that more redundant data are stored into the cache
for different jobs at different time. It eventually leads to
low system throughput, since the data accessing cost typ-
ically represents a major proportion of the total execution
time for an iterative graph algorithm.

Take Figure 3 as an example and assume that the cache
can only store a partition for the CGP jobs. With the
existing solutions, the SSSP job may first access partition
1 and then partition 2, whereas the PageRank job may
first access partition 2 and then partition 1. Besides, the
processing of each partition is various for different jobs,
making their accesses more irregular. As a result, the
partition 1 and partition 2 need to be repeatedly loaded
into the cache. It leads to serious contention among the
jobs for the data access channel, the cache and so on.

2.2 Correlations between the CGP jobs

It is common that a set of CGP jobs involve in the anal-
ysis of the same graph. Figure 1(b) shows the ratios of a
graph shared by different number of CGP jobs at various
time sampled from the real trace. We discover that there
are strong temporal and spatial correlations between the
data accesses of the CGP jobs due to the repeated tra-
verse of the graph shared by them. It indicates that many
redundant accesses are issued by the CGP jobs and much
cache space is also wasted to store several copies of the
same graph structure data for the jobs at different time.

As described in Figure 1(b), the intersections of the set
of graph partitions to be handled by different CGP jobs
in each iteration are large (more than 75% of all active
partitions on average). This is called the spatial correla-
tion. However, the CGP jobs in existing systems access
the shared graph partitions in different order individually,
inducing much redundant overhead. Ideally, these CGP
jobs should consolidate the accesses to the shared graph
structure and store a single copy of the shared data in the
cache to serve multiple CGP jobs at the same time.

In addition, some graph partitions may be accessed by
multiple CGP jobs (may be more than 16 jobs) within a
short time duration. This is called the temporal corre-
lation. The traced results show that the number of CGP
jobs to access each partition is skewed at any time. The
current solutions, e.g., Least Recently Used (LRU) algo-

rithm, may load the infrequently-used data into the cache
when it is needed. It not only incurs the cost to load the
data, but also swaps out the frequently-used data. A bet-
ter solution should take into account the temporal corre-
lations, e.g., the usage frequency of the graph partitions,
when loading them into the cache.

These observations motivate us to develop a solution
for efficient use of cache/memory and the data access
channel to achieve a higher throughput by fully exploit-
ing the spatial/temporal correlations discussed above.

3 Ouwur Proposed Approach

Although we have identified the correlations between the
CGP jobs, there are still several challenges that need to
be tackled in order to exploit them. First, the shared ver-
tices and edges may be individually handled by different
jobs along different graph paths. Second, the CGP jobs
have different properties (e.g., the rounds for conver-
gence and the submitting time), which reduce the chance
of sharing the accesses to the graph structure data within
a short time interval. For example, some graph structure
partitions may be accessed by some jobs (e.g., PageR-
ank) much more frequently than the others (e.g., BFS).
Besides, the CGP jobs that share the same graph structure
may be put into execution at different time. Third, it is
a non-trivial task to design an efficient partition-loading
order that can achieve a high cache utilization ratio.
Therefore, we propose a data-centric LTP (Loading-
Trigger-Pushing) model so as to fully exploit the spa-
tial/temporal correlations between the CGP jobs, aiming
to minimize the redundant accessing and storing cost of
the shared graph structure data. In our LTP model, the
shared graph is divided into a set of partitions. These par-
titions are loaded into the cache in sequence and in the
same order for all jobs, where each partition is concur-
rently handled by the related CGP jobs. By such means,
the accessing and storing of most graph structure parti-
tions can be shared by multiple CGP jobs, thus signifi-
cantly reducing the data access cost. When loading the
graph partitions, a scheduling algorithm is further devel-
oped to specify the loading order of graph partitions (as
well as the related job-specific data). The scheduler aims
to maximize the cache utilization by fully exploiting the
temporal correlations among the jobs’ data accesses.

3.1 Data-centric LTP Execution Model

Assume that the data for an iterative graph algorithm is
expressed as D = (V,S,E,W), where V is the set of ver-
tices, S is the set of states for the vertices, E is the set of
edges, W is the set of weights associated with the edges.
In our LTP model, the data of each job is decoupled as the
graph structure data, i.e., G = (V,E, W), and job-specific
vertex states, i.e., S, where G= U;G' is shared by differ-



ent jobs and G is the /" partition of the graph G. Each
job has its own S, and repeatedly updates its S through
its processing iterations until the calculated results con-
verge. The processing of each iteration is divided into
three stages: graph loading, parallel trigger and pushing
stage, which are formalized as follows.

Graph Loading: In each iteration, the shared graph
structure partitions, e.g., G, are sequentially loaded for
the CGP jobs along an order. It performs the following
operation to load a graph partition: L’ + L(G",U e JSj.),
where L(*) denotes an operator that loads the data spec-
ified in the parameter list “*” into the cache, J is the job
set, S; denotes the states of the vertices in G’ associated

with the jth job, and L! is the data loaded into the cache.
§j = U;S' is the set of vertex states related to the j job.
In this way, it only needs to load a copy of each shared
graph partition, e.g., G', for multiple CGP jobs and the
partitions are also loaded for these jobs along a common
order to provide opportunity to the sparing of redundant

accesses by fully utilizing the correlations of these jobs.

Trigger and Parallel Execution: For each loaded
graph partition G', the related CGP jobs, which are the
jobs that need to process the vertices in the partition
G' and have not yet obtained the convergent results, are
triggered to concurrently execute the following operator:
Siner +— UjesTj(G',S5). The function Tj(G',S") denotes
the specific graph processing operations performed by
the activated job j on the loaded data (i.e., G' and S;)

towards its own objectives. Its outputs (denoted by S;fm“)

are the new states related to the vertices in G' and are as-
sociated with the j™ job. Siev=U je JS’j’”W is the new ver-
tex states that are related to the vertices in G' for all CGP
jobs. When the processing of G’ is finished for all re-
lated jobs, the next partition then can be loaded. By such
means, it enables multiple jobs to regularly and concur-
rently process the set of shared graph partitions for their
own goals along the same order and efficiently share the
accesses to them for lower overhead.

State Pushing: If a job, e.g., j, has processed all its
active partitions in an iteration, its new calculated results,
ie., S;eW:U;S’j’”W, at this iteration are pushed for the state
synchronization between the vertices of its different par-
titions (stored in its own job-specific space) for conver-
gence. Then, the job starts a new iteration. Note that
a CGP job will move to the next iteration once it has
processed all active partitions in its current iteration and
therefore different CGP jobs may be in different itera-
tions of their graph processing. For example, BFS [10]
may only need to handle a few active partitions in each it-
eration while other algorithms, e.g., PageRank [23], may
have to go through all partitions to complete an iteration.

Figure 3 gives an example to illustrate the LTP model.
In this example, the graph in Figure 4(a) is divided into

PageRank iob co
PageRank job SSSP job
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Figure 3: Illustration of our data-centric LTP model

two partitions, which need to be handled by two jobs, i.e.,
a PageRank job and a SSSP job. The graph structure data
is stored in the global space and is shared by these two
CGP jobs, while the job-specific space is provided for
each CGP job to store its own vertex states. It can load
the two partitions along the order of partition 1 then 2.
When the partition 1 and the related job-specific data are
loaded into the cache, the related jobs (i.e., the PageRank
job and the SSSP job) are triggered to concurrently han-
dle it and update their own vertex states. When the two
jobs have handled the partition 1, the partition 2 can be
loaded for processing. When both the two partitions are
handled by the jobs, the new iteration of each job begins.

3.2 Correlations-aware Execution of Jobs

This section discusses how to efficiently implement our
LTP model for the execution of multiple CGP jobs.

3.2.1 Graph Storage for Multiple CGP Jobs

We first show how to efficiently store the graph for the
CGP jobs in our approach.

Data Structure of Graph Partition. For parallel pro-
cessing, large-scale graph needs to be divided into parti-
tions. However, the real-world graph usually has highly
skewed power-law degree distributions [12], incurring
imbalanced load among the partitions. Thus, our system
also uses existing vertex-cut partitioning method [33],
and evenly divides the edges of the graph into same-
sized partitions in terms of the number of edges. Note
that a vertex may have multiple replicas (e.g., v3 in Fig-
ure 4(b)), where one of the replicas is nominated as the
master vertex and the others are regarded as the mirror
vertices. In this way, it not only gets balanced load for the
partitions, but also does not incur communication cost
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(b) Details for the related tables
Figure 4: An example to show how to store data for mul-
tiple jobs, where the graph is divided into two partitions

when handling each partition. The communication only
occurs when the replicas of the same vertex in different
partitions synchronize their states. In order to effectively
store the graph partitions for the CGP jobs, multiple key-
value tables are established. In detail, a single global
table is created to store the graph structure data for all
CGP jobs. Multiple private tables are used to store the
vertex states of the jobs, i.e., one table for each job.

Each global table entry represents a graph structure
partition indexed by its key and with three other fields to
describe corresponding information. The first two fields
indicate the location of this graph structure partition and
the number of its vertices, respectively. The third field
stores the IDs of the jobs to process it at the next iteration
(along with the locations of the related private tables as-
sociated with these jobs). The information of each graph
structure partition is also stored in a key-value table and
its each data item indicates a vertex and contains four
fields: vertex ID, edges assigned in this partition, flag,
master location and the information associated with its
edges, e.g., priority. Each private table entry represents
a vertex state and has two fields, i.e., vertex ID and its
state. Figure 4 gives an example to illustrate how to store
the data for multiple jobs.

Suitable Size of Graph Partition. In order to effi-
ciently use the parallelism of CPU and ensure good cache
locality, the cache is expected to be just fully loaded
when each core has data to handle. Therefore, the suit-
able size of each graph structure partition, i.e., P, is de-
termined by the number of CPU cores, i.e., N, and the

Partition 2

Partition 3

Partition 4 Partition4 | | Partition4 |
Timestamp 1 Timestamp 2 Timestamp3 ~ Time

Figure 5: An example to illustrate how to store evolv-
ing graph structure for the CGP jobs submitted at differ-
ent timestamps, where partitions 2 and 4 are changed at
timestamp 2, and partition 4 is changed at timestamp 3

size of the cache, i.e., C. The value of P, is expected to be
the maximum integer such that P, + f—: xsp xN+b<C,
where s, is the average size of each graph structure parti-
tion’s item, s, is the size of each private table’s item, and
b is the size of reserved buffer.

Details to Store Evolving Graph Structure. In prac-
tice, the graph structure may evolve with time. Thus, we
also maintain a series of snapshots for it, where the graph
updates, e.g., the adding/deleting of vertices and edges,
are only visible to the jobs submitted later than the up-
dates. In this way, different jobs are able to correctly
handle the related snapshots of the graph, respectively.
Because the changes of graph structure are usually very
small at each time, the most part of these snapshots is the
same. Thus, the series of snapshots can be stored in an
incremental way for low overhead. For each snapshot, it
creates a new global table and labels it with a timestamp,
where this table only stores the new version of the parti-
tion with changes. The newly submitted job handles the
graph partitions with the highest timestamp yet less than
its arrival time. Figure 5 gives an example to illustrate it.
Note that most graph structure partitions, e.g., the parti-
tions 1 and 3, are usually shared by the jobs when they
handle different snapshots, respectively.

3.2.2 Loading of Graph Partition

In practice, a partition is to be handled by a job in the
next iteration only when its vertices are activated by the
other ones of this job at the current iteration. Therefore,
it is easy for each partition to identify the set of CGP
jobs to process it within the next iteration through trac-
ing the partitions activated within the current iteration.
This profiled information, i.e., the temporal correlations
of the jobs, is stored in the global table for each parti-
tion. The spatial correlations between the data accesses
issued by the CGP jobs can be gotten by calculating the
intersection of the set of graph partitions to be processed
by different jobs. After that, it is able to load the shared
graph partitions for exactly once along a common order
to serve multiple CGP jobs within each iteration, amor-
tizing the data access cost.

For each job, the states of most vertices may have



Algorithm 1 Details of Each Trigger

procedure TRIGGER(G', S;)
for each v, € S; A IsNotConvergent(v;) do

1:

2

3 Compute(G', v;,)

4 if v;, is a mirror vertex then

5: D < vy.MasterLocation

6 S’}W.Insert(vh, i, D, vy.Avalue)
7 end if

8 end for

9: end procedure

converged at the early iterations, although some vertices
need hundreds of iterations for convergence. The load-
ing and processing of the inactive vertices can be skipped
for the related job for low overhead. In detail, when a
graph structure partition G’ is loaded into the cache, it
only loads the related job-specific private partitions, e.g.,
§%, of the CGP jobs which need to process G'. It does not

load G' when there is no job to handle G, i.e., the states
of the vertices in G' are inactive for all jobs. Specifically,
when a graph structure partition is not used by any job at
the next iteration, this graph structure partition is labeled
as an inactive one so as to skip its loading. Similarly, it is
relabeled as an active one when it needs to be processed
by some jobs at the next iteration.

3.2.3 Parallel Processing of Graph Partition

After loading a graph partition G into the cache, it trig-
gers the related CGP jobs (e.g., j) to concurrently handle
their private vertex states (e.g., S_i]-) associated with this
partition, respectively. Note that any newly submitted
job only needs to register the partitions to be processed
by it at its first iteration and waits to be triggered to han-
dle them. It is possible that the number of CGP jobs is
more than the number of CPU cores, i.e., N. Assume a
partition is shared by |J| number of jobs. When the value
of |J| is larger than N, these CGP jobs are assigned to be
processed as different batches, where the shared graph
structure partition is fixed in the cache and only the job-
specific partitions are replaced. A graph structure parti-
tion is swapped out of the cache only when it has been
processed by the related jobs within the current iteration.
Otherwise, the unprocessed jobs need to load it again.
For the processing of each partition, the computation
load of different CGP jobs is usually skewed, leading to
low utilization ratio of hardware. In order to tackle this
problem, it identifies the straggler, i.e., the job with the
most number of unprocessed vertices in its private table
for this partition. Note that the number of unprocessed
vertices can be easily gotten, because the number of ac-
tive vertices for each job in each partition is known as
this partition is handled by the jobs at the previous itera-
tion. Then, as described in Figure 6, it logically divides

Job 1 Job 1 Job 2 Job 3
g(re 1 re 2 re3 /_Q{re 4

v

‘ Private Partition 1 of Job 1

Private Partition
1of Job 2

Private Partition
1ofJob3

| Graph Structure Partition 1 |
Cache

Figure 6: An example to illustrate how to get balanced
load, where the core 1 and the core 2 are handling the
partition 1 of the private table of the job 1 together

the unprocessed vertices in the private partition of the
straggler into pieces and assigns them to the free cores to
assist its processing.

The processing details for a job are given in Algo-
rithm 1, where each job only compute the new state
for its vertices in Sj. according to their local neighbors

recorded in the graph structure partition G’ (See Lines 2-
8). Therefore, there is no cache miss when handling
a partition, because no communication occurs between
the vertices on different partitions. Obviously, the vertex
with replicas on different partitions needs to synchronize
their states. The mirror vertex needs to push its new state
to its master vertex to get this vertex’s final state at the
current iteration. The new calculated state on the master
vertex need to be pushed to its mirrors. As a result, for
such a vertex state synchronization, many partitions of
private table are frequently loaded into the cache and in-
cur high cache miss rate. In order to tackle this problem,
for each mirror vertex, its new state is directly buffered
in §7" (See Line 6), which will be implicitly sent to the
master replica for batched vertex state synchronization at
the data synchronization stage.

3.2.4 Data Synchronization

When there are multiple CGP jobs to synchronize vertex
state, it is done for the jobs one by one so as to reduce
resource contention, because there is no data sharing be-
tween the jobs. For efficient vertex state synchroniza-
tion among replicas, as depicted in Algorithm 2, they are
done together in batches at this stage for each job, aiming
to avoid the frequent load of private table’s partitions at
runtime. The items buffered in the queue §" (with the
new states of the mirror vertices, e.g., v;,) are first sorted
according to the IDs (e.g., vy.MasterLocation, which is
described in Figure 4(b)) of the partitions with the related
master vertices, before pushing them (See Line 2).

By such means, it only needs to load fewer partitions
of private table for the state updates of master vertices,
since many updates become successive accesses to the
same partition. Besides, when the successive updates for
a master vertex are done (See Line 7), the final state of
this vertex for the current iteration is gotten. Then, such
anew value can be directly buffered for batched state up-
dating of mirror vertices as well (See Lines 10-12). Note



Algorithm 2 Details of Data Synchronization
1: procedure PUSH(j, S?ew)
2: SortD(S;?eW) /*Sort the items recorded in S;?ew */
3 for <vy, i, MasterLocation, Avalue> € S;?ew do
4 D « S%"[vy].MasterLocation
5 value < S [vy].Avalue
6: S]D [vi].Avalue Acc(S? [vn].Avalue,value)
7
8
9

if Last update of S? [vi].Avalue is end then
val < S?[vh].value
SJD [vi].value<— Acc(val, S/D [vi].Avalue)

10: for each S [vy].MasterLocation=D do
11: S5 [va].Avalue < S? [vi].Avalue

12: end for

13: end if

14: end for

15: SOITS(S;?W) /*Sort the items recorded in S;?ew */
16: for <vy, i, MasterLocation, Avalue> € S;?ew do
17: i 87" [vy).i

18: S; [va].Avalue < S7°"[vy].Avalue

19: end for

20: end procedure

that, with the traditional solutions, it is impossible to
know whether the final state is gotten for a master vertex
until all updates are done. Then, the master vertex needs
overhead to be reloaded for accessing, because it may
have been swapped out of the cache. After that, it is done
in a similar way to update mirror vertices’ states accord-
ing to the related master vertices’ states (See Lines 15-
19), where the items are sorted according to the IDs of
the partitions with the mirror vertices (See Line 15).

3.3 Scheduling Based on Core-subgraph

With existing solutions, the partitions loaded into the
cache may be underutilized. First, some vertices need
more iterations to converge than the others for much
higher degree. They make the partitions containing them
repeatedly loaded into the cache and incur high overhead
to load and store the early convergent vertices in the same
partition. Second, the usage frequency of different par-
titions is also skewed and also evolving with time. In
detail, the same partition of different jobs and different
partitions in the same job all may need various iterations
to converge. Besides, a graph partition is only visible to
the jobs with the arrival time latter than its timestamp. As
a result, a loaded partition may need to be processed by
very few (even one) jobs when the partition is arbitrarily
loaded into the cache, inducing poor performance.

In order to maximize the utilization ratio of each parti-
tion loaded into the cache, we propose a scheduling algo-
rithm based on core-subgraph partitioning. The key idea
is to first divide the core vertices (with degree higher than

a given threshold) together and then make the loaded par-
tition shared by as many jobs as possible on average via
arranging the loading order of graph partitions. In de-
tail, it first identifies a core subgraph, consisting of the
core vertices and the edges on the paths between them,
from the graph. Then it evenly divides the graph based on
such a subgraph, where the edges of this subgraph are di-
vided together into several same-sized partitions and the
remaining edges are divided into the other same-sized
partitions. By such means, the frequently loading and
processing of core vertices incurs less cost to load the
early convergent vertices in the same partition, sparing
the consumption of bandwidth and the cache space.
After that, it gives each partition P a priority Pri(P)
and schedules the loading order of these partitions based
on the dynamically profiled priorities of them. The parti-
tion with the highest priority is first loaded into cache for
the CGP jobs to handle, so as to improve the cache uti-
lization ratio. The basic scheduling rules are as follows:
e First, a partition should be given the highest priority
and be first loaded into the cache when it is needed
by the most number of jobs for processing.

e Second, a partition should be set with a higher pri-
ority when it has a higher average vertex degree or
a larger average vertex state changes, because more
vertex states will be propagated to others through
them. Then, most vertices need less iterations (also
less consumption of the cache) to absorb other ver-
tices’ states for convergence.

The above rules are captured by such an equation:

Pri(P) =N(P)+6-D(P)-C(P) (1)
where N(P) is the number of jobs to process P and is
used to capture the temporal correlations for the CGP
jobs. D(P) is the average degree of the vertices in P, and
C(P) is the average state changes of the vertices in P for
all its jobs at the previous iteration. The initial values of
N(P) and C(P) and the value of D(P) are gotten at pre-
processing time, while N(P) and C(P) are incrementally
updated at the execution time. There, 0 < 8 < m
is the scaling factor set by the runtime system at prepro-
cessing time to ensure that a partition with the highest
value of N(P) is first processed, where D4 and Cy,qy are
the maximum values of any partition’s D(P) and C(P),
respectively. By such means, the partition loaded into
the cache is able to serve as many jobs as possible, while
the other partitions have more opportunity to be needed
by more jobs after a time interval, further improving the
throughput via reducing the average data access cost.

3.4 Implementation and Interfaces

The implementation details of CGraph are described in
Algorithm 3. It repeatedly loads the unprocessed parti-
tions, e.g., G', of the global table into the cache according



Algorithm 3 Executor for CGraph
1: procedure EXECUTOR(G, Sj,ps)

2: while the job set S, is not empty do

3 while G has unprocessed G’ for some jobs do
4 G' + LoadPartition(G) /*Load G**/

5: /*Get the set of jobs to handle G'*/

J < Getlobs(G', Sjops)
for each j € J do

7: /*Trigger the job j to handle G'*/

ParallelTrigger(j, G', S';)
end for
: for each j € J and §7*" are gotten do

10: /*Vertex state synchronization for j*/
Push(j, §5)

11: if vertex states of j are inactive then

12: /¥*Remove j from the set Sj,ps*/

Remove(S ops, J)

13: end if

14: end for

15: end while

16: end while

17: end procedure

to the scheduling algorithm (See Line 4). For each G',
the job-specific partitions, e.g., S;, of the related CGP
jobs are also loaded and these jobs are triggered to con-
currently handle the loaded data (See Lines 5-8), where
each job calculates the new states of its vertices accord-
ing to the states of their local neighbors. When all ac-
tive partitions of G has been handled for a job, e.g., j, at
the current iteration (See Line 9), this job synchronizes
the states of the vertices with several replicas distributed
over different partitions (See Line 10). Then, its new it-
eration begins. Each job is repeatedly triggered until all
its vertex states are inactive (See Lines 11-13). Note that
it allows to add new jobs into Sy, at runtime.

For programming, a user only needs to instantiate
three functions, i.e., IsNotConvergent(), Compute() and
Acc(), which are used in existing systems [25, 32, 33].
The first one indicates whether a vertex is convergent.
Compute() is employed to update a vertex state and cal-
culate the contributions of a vertex for the new states of
its neighbors, and Acc() is utilized for a vertex to accu-
mulate the contributions of its neighbors. Figure 7 gives
two examples to show how to implement iterative graph
algorithm on CGraph. Within each iteration, each vertex
updates its state according to the accumulated contribu-
tions of its neighbors. After that, it calculates and sends
its contributions to its neighbors for their state updates.

4 Experimental Evaluation

The hardware platform used in our experiments is a
server containing 4-way 8-core 2.60 GHz Intel Xeon

IsNotConvergent(vh):
return [vh.Avalue|< 0

IsNotConvergent(vh):
return [vh.Avalue>¢

Acc(valuet, value2):
return valuei+value2

Acc(valuet, valuez):
return min(valuel, value2)

Compute(Gi, vh)://Processing of each vertex
vh.value<—Acc(vh.value, vh.4value)
<links><—look up outlinks of vh from Gi
for(each link <vh, ve>e<links>){

Avalue<—dxvh.4value/Gi[vh].OutDegree
ve.Avalue—Acc(ve.4value, Avalue)

3 3

Compute(Gi, vh)://Processing of each vertex
vh.value<-Acc(vh.value, vh.4value)
<links><—look up outlinks of vh from Gi
for(each link <vh, ve>&<links>){
Avalue<vh.value+<vh, ve>.distance
ve.Avalue<—Acc(ve.4value, Avalue)

(a) PageRank (b) SSSP
Figure 7: Instantiation of graph algorithms on CGraph

Table 1: Data Sets Properties

Data sets Vertices Edges Sizes
Twitter [18] 41.7M 148B 175G
Friendster [4] 65M 18B 227G
uk2007 [3] 1059M 37B 462G
uk-union [3] 133.6M 55B 683G
hyperlink14 [5] 1.7B 644B 480.0G

CPU E5-2670 and each CPU has 20 M last-level cache,
running a Linux operation system with kernel version
2.6.32. Its memory is 64 GB and the secondary stor-
age for it is a disk with 1TB. It spawns a worker for each
core to run benchmarks. The program is compiled with
cmake version 2.6.4 and gcc version 4.7.2.

In experiments, four popular iterative graph algo-
rithms from web applications and data mining are em-
ployed as benchmarks: (1) PageRank [23]; (2) single-
source shortest path (SSSP) [22]; (3) strongly con-
nected component (SCC) [16]; (4) breadth-first search
(BFS) [10]. The datasets used for these algorithms are
real-world graphs existing on websites [3, 4, 5, 18] as de-
scribed in Table 1. The performance of CGraph is com-
pared with three cutting-edge graph processing systems,
i.e., CLIP [6], Nxgraph [11] and Seraph [31, 32]. Seraph
is the state-of-the-art system optimized to support the ef-
ficient execution of multiple CGP jobs. Note that the jobs
(e.g., PageRank, SSSP, SCC and BFS) in the experiments
are submitted to each system simultaneously.

4.1 Performance of Scheduling Strategy

First, we show the contributions of our scheduling algo-
rithm on the performance of CGraph. To get this goal,
PageRank, SSSP, SCC and BFS are executed as four
CGP jobs to evaluate the total execution time of them
over CGraph (with our scheduler) and CGraph-without
(without our scheduler), respectively. As depicted in Fig-
ure 8, the execution time of CGraph-without is more than
CGraph under any circumstances. For example, the ex-
ecution time of CGraph is even only 60.5% of CGraph-
without over hyperlink14. It is because that the schedul-
ing scheme is able to maximize the utilization ratio of
each partition in the cache via fist loading the most im-
portant partition for the jobs.
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4.2 Overall Performance Comparison

To compare the performance of CLIP, Nxgraph, Ser-
aph and CGraph, we simultaneously submit PageRank,
SSSP, SCC and BFS as four jobs to each of these sys-
tems. Figure 9 gives the total execution time of the four
jobs over different systems. We can find that the four jobs
over CGraph are able to converge with less time, which
indicates higher throughput than the other systems. For
example, over hyperlink14, CGraph is able to improve
the throughput by 2.31 times, 3.29 times and 4.32 times
in comparison with Seraph, CLIP and Nxgraph, respec-
tively. We identify that the highest throughput of CGraph
mainly comes from much lower average data access cost
to computation ratio than them.

Figure 10 shows the execution time breakdown of dif-
ferent jobs evaluated on hyperlink14 with different so-
lutions. We can observe that the pure vertex processing
time of the job over CGraph occupies the most ratio of
its total execution time, while the ratio is very low in
CLIP, Nxgraph and Seraph. There are two reasons lead-
ing to lower average data access cost to computation ratio
for CGraph than the other solutions. First, through effi-
ciently exploiting the data access correlations between
the CGP jobs, CGraph needs to store less data into the
cache, getting a lower cache miss rate. Second, CGraph
needs to access less volume of data due to efficient share
of data accesses for the jobs, which means less consump-
tion of bandwidth for main memory and the disk.

In order to demonstrate it, we first evaluate the last-
level cache miss rates of CLIP, Nxgraph, Seraph and
CGraph using Cachegrind [1]. The miss rates of the
above four jobs over different systems are given in Fig-

into the cache for the four jobs

jobs with different solutions

ure 11. As described, the cache miss rate of CLIP is
larger than Nxgraph, because CLIP tries to trade off lo-
cality for the reduction of the total amount of data ac-
cesses while Nxgraph uses destination-sorted sub-shard
structure to store a graph for better locality. However,
the cache miss rate of Nxgraph is still more than CGraph.
For example, the cache miss rate of Nxgraph is 89.5% for
hyperlink14, while the rate is only 29.6% for CGraph. It
is mainly because that a single copy of graph structure
data in the cache is able to serve multiple jobs of CGraph.

Next, we evaluate the total volume of data swapped
into the cache for the above four jobs over different sys-
tems. The normalized results of them against CLIP are
depicted in Figure 12. We can find that CLIP needs
to swap much smaller volume of data into the cache
than Nxgraph and Seraph, because it is able to reduce
the number of iterations for convergence via reentry of
loaded data and beyond-neighborhood accesses. Note
that the method employed by CLIP can also be used in
Seraph as well as CGraph, rather than Nxgraph.

Besides, from Figure 12, we can observe that the vol-
ume of CGraph is much less than those of the other solu-
tions. For example, the value of CGraph is only 47.1% of
CLIP over hyperlink14, because CGraph does not need
to load and to store the shared graph structure data for
each job, separately. However, CLIP suffers from many
redundant data accesses due to ignoring the data access
correlations between the CGP jobs. Although Seraph can
spare some data accesses from the disk to the main mem-
ory via sharing in-memory data, each job loads data into
the cache in an individual way, incurring high data ac-
cess overhead as well. It also means that Seraph is only
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suitable to out-of-core computation.

Finally, the I/O overhead of the above four jobs is
also evaluated over different systems. As shown in Fig-
ure 13, the jobs on the first three graphs almost not in-
cur I/O overhead for both CGraph and Seraph, because
they only needs to store one copy of the graph structure
data in the main memory and these graphs can be totally
loaded. When the graph size is larger than the mem-
ory size, CGraph needs less I/O overhead than Seraph
through consolidating data accesses for the jobs. It also
indicates a better performance of CGraph for out-of-core
computation, because the data access time dominates the
total execution time under such circumstances.

4.3 Scalability of CGraph

The scalability of CGraph is evaluated via executing the
above four jobs on hyperlink14 and increasing the num-
ber of workers. Figure 14 gives the results relative to
that of CLIP with only one worker. We can observe that
CGraph has much better scalability than the other ones.
The best scalability of CGraph mainly comes from effi-
cient share of data accesses, while the other systems suf-
fer from limited bandwidth for main memory and mag-
netic disk. Meanwhile, such a limited bandwidth also
induces low utilization ratio of CPU for them.

In Figure 15, we evaluate the average utilization ratio
of CPU for the vertex processing of the four jobs over
different systems. As observed, existing systems suffer
from low CPU utilization ratio, because the long data ac-
cess time leads to the waste of CPU for them. Besides,
from Figure 14 and Figure 15, we can find that the CPU
cores of CGraph are almost fully utilized thanks to bal-
anced load and low data access cost to computation ra-
tio. It indicates that the limited computation ability of the
CPU cores becomes the bottleneck of CGraph. GPGPU
may be a suitable accelerator to help CGraph to process
the CGP jobs for its powerful computing ability.

4.4 Performance on Graph with Changes

In real-world applications, several snapshots may be cre-
ated for the graph with changes, and multiple CGP jobs
are generated to handle them, respectively. In this part,
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we evaluate the performance of CGraph for the graph
with structure changes. In the following experiments, we
repeatedly generate the CGP jobs in the order of PageR-
ank, SSSP, SCC and BFS until a given number of jobs are
created, where the CGP jobs are executed over a series of
snapshots, respectively. Note that Seraph-VT is the ver-
sion of Seraph, using the state-of-the-art multi-version
switching approach [17] on Seraph.

First, we evaluate the total execution time of eight
CGP jobs over different systems for hyperlink 14 with the
graph change ratio ranging from 0.005% to 5%. In detail,
the change on the successive two snapshots ranges from
0.005% to 5%. Figure 16 gives the results relative to the
execution time of Seraph-VT when the ratio of changed
edges is 0.005%. We can observe that CGraph always
gets the best performance under different graph change
ratios. It is because that CGraph still gets a low average
data access cost to computation ratio, although the snap-
shots have differences in graph structure. Besides, we
can also find that CGraph needs longer execution time to
handle the graph when the graph change ratio is larger,
because of less data access correlations between the jobs.

In the following experiments, we take a series of snap-
shots of hyperlink14 as datasets, where the change ratio
between any successive two snapshots is 5% and each
job handles a snapshot. Figure 17 depicts the execution
time breakdown of the jobs over different systems on hy-
perlink 14 when the the number of jobs increases. We can
find that the jobs over CGraph have a lower average data
access cost to computation ratio with the increase of the
number of jobs, because there is more jobs to amortize
the data access cost. However, for Seraph-VT and Ser-
aph, the condition with more jobs leads to much more
volume of data loaded into the cache and makes them
suffer from serious cache interference and limited band-
width. Thus, CGraph performs much better than Seraph-
VT and Seraph when the number of jobs is larger.

The last-level cache miss rate is also evaluated for
them on hyperlink14. As depicted in Figure 18, the cache
miss rate of CGraph is significantly reduced when the
number of jobs is increased, because the data in the cache
can be repeatedly used by different CGP jobs. For ex-
ample, in CGraph, the cache miss rate of the condition
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of different solutions on hyperlink14

with eight jobs is even only 32.8% of the condition with
one job. However, in the other solutions, the cache miss
rate is significantly increased when the number of jobs is
more, because of serious cache interference.

Figure 19 gives the ratio of the total accessed data (in-
cluding the data from the disk to the main memory and
the main memory to the cache) spared by different so-
lutions on hyperlink14 in comparison with the way se-
quentially executing the jobs over Seraph. As expected,
the number of data accesses spared by CGraph is much
more than the other solutions. For example, when the
number of jobs is eight, the ratio is even up to 65.9%
for CGraph, while the ratios of Seraph-VT and Seraph
are only 39.5% and 31.3%, respectively. Besides, as ob-
served, CGraph spares much more data accesses when
the number of jobs increases, thanks to more opportunity
to share data accesses between different jobs.

5 Related Work

With the explosion of graph scale, many systems [15, 21,
29, 34] have focused on achieving high efficiency for it-
erative graph analysis. However, most of them focus on
supporting single graph processing job. They improve
the efficiency either by fully utilizing the sequential us-
age of memory bandwidth, or by achieving a better data
locality and less redundant data accesses, which conse-
quently reduces the volume of the accessed data.
GraphChi [19] is a popular one to achieve sequential
storage access by employing parallel sliding windows.
X-Stream [25] and Chaos [24] improve GraphChi by us-
ing the streaming partitions for better sequential access
of out-of-core data. Xie etc. [30] propose a novel block-
oriented computation model, in which computation is
iterated locally over blocks of highly connected nodes,
which improves the amount of computation per cache
miss. PathGraph [33] models a large graph using a col-
lection of tree-based partitions for better locality. Grid-
Graph [35] proposes 2-Level hierarchical partitioning
scheme to improve the locality and reduce the amount
of I/0Os. Mosaic [20] proposes a Hilbert-ordered tiles
to store the graph for locality-optimizing and a hybrid
execution model for fast heterogeneous computing. NX-
graph [11] uses the destination-sorted sub-shard structure
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to store a graph for better locality and adaptively chooses
the fastest strategy to fully utilize the memory space and
reduce the amount of data transfer. Instead of targeting a
better locality, CLIP [6] proposes a method to reduce the
total data access cost through the reentry of the loaded
data and the so called beyond-neighborhood accesses.

Although these systems can support efficient execu-
tion of a single iterative graph processing job, multiple
separate copies of the same graph need to be created in
the main memory by them for the CGP jobs. Follow-
ing on this direction, Seraph [31, 32] is designed to al-
low multiple jobs to correctly share one copy of the in-
memory graph structure data. However, in Seraph, the
accesses to the same graph partitions are performed sep-
arately by the jobs along different graph paths, incur-
ring redundant accesses and wasting the cache as well.
Note that graph databases [8] are recently proposed to
support concurrent queries over a graph. For example,
TAO [9] provides a simple data model and APIs to store
and query graph data. Wukong [26] uses a RDMA-based
approach to provide low-latency concurrent queries over
large graph-based RDF datasets. However, these graph
database solutions can not efficiently support the execu-
tion of the CGP jobs because they are dedicated to graph
queries which usually only touch different small subsets
of a graph for exactly once, instead of iteratively process-
ing the entire graph for many rounds.

6 Conclusion

This paper discovers that many redundant data accesses
exist in the CGP jobs for their strong temporal and spa-
tial correlations. A novel data-centric LTP model and
an efficient scheduling algorithm is then proposed to ex-
ploit our observed data access correlations in these jobs
and allows multiple CGP jobs to efficiently amortize the
data access cost for higher throughput. Experimental re-
sults show that our approach significantly improves the
throughput for the CGP jobs against the state-of-the-art
solutions. This work mainly focuses on static graph pro-
cessing. In the future work, we will research how to fur-
ther optimize our approach for evolving graph analysis
and also extend it to a heterogeneous platform consisting
of GPUs for efficient concurrent iterative graph analysis.
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