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RACE: An Efficient Redundancy-aware Accelerator for

Dynamic Graph Neural Network

HUI YU, YU ZHANG, JIN ZHAO, YUJIAN LIAO, ZHIYING HUANG, DONGHAO HE,

LIN GU, HAI JIN, XIAOFEI LIAO, and HAIKUN LIU, National Engineering Research Center for Big

Data Technology and System, Service Computing Technology and System Lab, Cluster and Grid Computing

Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, China

BINGSHENG HE, National University of Singapore, Singapore

JIANHUI YUE, Michigan Technological University, America

Dynamic Graph Neural Network (DGNN) has recently attracted a significant amount of research attention

from various domains, because most real-world graphs are inherently dynamic. Despite many research ef-

forts, for DGNN, existing hardware/software solutions still suffer significantly from redundant computa-

tion and memory access overhead, because they need to irregularly access and recompute all graph data

of each graph snapshot. To address these issues, we propose an efficient redundancy-aware accelerator,

RACE, which enables energy-efficient execution of DGNN models. Specifically, we propose a redundancy-

aware incremental execution approach into the accelerator design for DGNN to instantly achieve the output

features of the latest graph snapshot by correctly and incrementally refining the output features of the pre-

vious graph snapshot and also enable regular accesses of vertices’ input features. Through traversing the

graph on the fly, RACE identifies the vertices that are not affected by graph updates between successive snap-

shots to reuse these vertices’ states (i.e., their output features) of the previous snapshot for the processing

of the latest snapshot. The vertices affected by graph updates are also tracked to incrementally recompute

their new states using their neighbors’ input features of the latest snapshot for correctness. In this way, the

processing and accessing of many graph data that are not affected by graph updates can be correctly elim-

inated, enabling smaller redundant computation and memory access overhead. Besides, the input features,

which are accessed more frequently, are dynamically identified according to graph topology and are prefer-

entially resident in the on-chip memory for less off-chip communications. Experimental results show that

RACE achieves on average 1139× and 84.7× speedups for DGNN inference, with average 2242× and 234.2×
energy savings, in comparison with the state-of-the-art software DGNN running on Intel Xeon CPU and
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NVIDIA A100 GPU, respectively. Moreover, for DGNN inference, RACE obtains on average 13.1×, 11.7×,

10.4×, and 7.9× speedup and 14.8×, 12.9×, 11.5×, and 8.9× energy savings over the state-of-the-art Graph

Neural Network accelerators, i.e., AWB-GCN, GCNAX, ReGNN, and I-GCN, respectively.

CCS Concepts: • Computer systems organization→ Special purpose systems; Parallel architectures;

Additional Key Words and Phrases: Redundancy-aware, dynamic graph neural network, hardware accelerator,

efficiency

ACM Reference format:

Hui Yu, Yu Zhang, Jin Zhao, Yujian Liao, Zhiying Huang, Donghao He, Lin Gu, Hai Jin, Xiaofei Liao, Haikun

Liu, Bingsheng He, and Jianhui Yue. 2023. RACE: An Efficient Redundancy-aware Accelerator for Dynamic

Graph Neural Network. ACM Trans. Arch. Code Optim. 20, 4, Article 53 (December 2023), 26 pages.

https://doi.org/10.1145/3617685

1 INTRODUCTION

Dynamic graphs, e.g., traffic networks [23] and biology antibiotic graphs [42], constantly evolve

over time [11, 47]. The continuously arriving graph updates (e.g., edge/vertex deletion/addition

and the mutation of vertex state) are usually deployed in batches to the graph, and a sequence

of graph snapshots at different time intervals are produced accordingly [8, 31, 39]. To extract la-

tent information from these dynamic graphs, many Dynamic Graph Neural Network (DGNN)

models [10, 24], which are neural networks encoding dynamic graph, are recently designed and

used for dynamic node categorization [28, 29, 38], dynamic link prediction [24], real-time graph

clustering [62], real-world E-recommendation [37], and so on.

To efficiently support DGNN models, software DGNN frameworks, e.g., DGNNS [8], have

been recently proposed to significantly diminish the transfer time and reduce the memory usage.

However, these software frameworks usually adopt coarse-grained (i.e., snapshot by snapshot)

execution, resulting in a substantially sub-optimal performance. Although some hardware

solutions [9, 14, 15, 25] have been designed for high-performance Graph Neural Network

(GNN) models, they are mainly designed to accelerate the processing of static graphs. As a result,

as shown in Table 1, both existing software and hardware solutions still suffer from significant

redundant computation and high data access cost due to the following two reasons, which

motivates us to design an efficient accelerator for DGNN workloads.

First, the vertices with the same input features, neighbors, and neighbors’ input features are

repeatedly accessed and processed for different snapshots, because the existing solutions need to

recompute all graph data of each graph snapshot, which results in redundant computation overhead.

Specifically, when handling multiple snapshots, the final states of the vertices with the same input

features, neighbors, and neighbors’ input features are identical across snapshots, because their

weight matrices are the same among multiple snapshots. This eventually causes serious redundant

computation, which wastes the memory and computation resources.

Second, the processing of the DGNN models suffers from serious irregular memory access, be-

cause the input features of the vertices are too large to be stored in the on-chip memory [14, 25, 51].

Specifically, usually only a small number of vertices need to be processed for each graph snapshot.

It incurs significant random accesses to these vertices’ input features and their neighbors’ input

features, because these input features are very sparsely dispersed in the off-chip memory. Besides,

the input features of some vertices are repeatedly accessed for the processing of different snap-

shots via irregular off-chip communications although these vertices’ final states are the same for

different snapshots.

To address the above two issues, we analyze the characteristics of DGNN models and have two

observations. First, the majority of vertices in two successive graph snapshots have the same input

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 53. Publication date: December 2023.
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Table 1. A Comparison of State-of-the-art Solutions in Terms of Support

for Dynamic Graph Neural Network

Solutions
Dynamic

graph

Incremental

execution

Inter-snapshot

redundancy aware

DGNNS [8] ✓ ✗ ✗

AWB-GCN [14] ✗ ✗ ✗

GCNAX [25] ✗ ✗ ✗

ReGNN [9] ✗ ✗ ✗

I-GCN [15] ✗ ✗ ✗

RACE ✓ ✓ ✓

features, neighbors, and neighbors’ input features, because only a small portion of the vertices’ in-

formation changes between these snapshots [8, 39]. Hence, these vertices can reuse their states of

the previous snapshot for the latest snapshot. It implies that DGNN model shows significant tem-

poral similarity. Second, due to the power-law property [16], some vertices are frequently accessed

for the processing of consecutive snapshots in the DGNN models, because most vertices have to

be updated through them to obtain final states for different snapshots. So, the DGNN models show

significant spatial locality, which allows us to cache these vertices’ input features in the on-chip

memory for better locality and smaller off-chip communications. Based on these observations, we

propose an effective redundancy-aware incremental execution approach to reduce redundant com-

putations and data access cost in the processing of DGNN models. However, the software-based

solution does not improve overall performance, because its overheads may outweigh its benefits.

We further propose the redundancy-aware accelerator, i.e., RACE, which enables efficient exe-

cution of the DGNN model, to reverse this situation. Specifically, RACE dynamically identifies the

vertices with the same input features, neighbors, and neighbors’ input features across successive

graph snapshots through traversing the graph on the fly and then reuses these vertices’ states of

the previous snapshot for the latest snapshot. The states of the vertices affected by graph updates

are recomputed based on the tracked information of their neighbors’ input features. By such means,

RACE can correctly and incrementally refine the results of the previous graph snapshot to quickly

obtain the results for the latest graph snapshot for DGNN by fully exploiting the temporal simi-

larity of DGNN models. Besides, RACE also dynamically identifies the most frequently accessed

input features of vertices according to graph topology and then caches these data in the on-chip

memory to fully exploit the spatial locality of DGNN models for fewer off-chip communications.

We have implemented RACE in an RTL targeting TSMC 12-nm library and conducted exten-

sive experiments to verify its effectiveness. For DGNN inference, the results show that RACE

outperforms the state-of-the-art software DGNN framework [8] running on Intel Xeon CPU and

NVIDIA A100 GPU by on average 1139× and 84.7×, with on average 2242× and 234.2× energy

savings, respectively. Compared with the state-of-the-art GNN accelerators, i.e., AWB-GCN [14],

GCNAX [25], ReGNN [9], and I-GCN [15], RACE obtains on average 13.1×, 11.7×, 10.4×, and 7.9×
speedup and 14.8×, 12.9×, 11.5×, and 8.9× energy savings, respectively, for DGNN inference.

2 BACKGROUND AND MOTIVATION

2.1 Background of DGNN

Discrete Time Dynamic Graphs (DTDG) [20, 29, 38]. A dynamic graph snapshot G = {G1, . . . ,
Gt , · · ·GT } and the input feature H make up a DTDG, where Gt = (Vt ,Et ), t ∈ [1,T ]. Vt and Et

are the sets of vertices and edges of snapshot t , respectively. The Et may be different for different

snapshots due to edge insertion/deletion. A vertex addition/deletion is modeled by adding/deleting

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 53. Publication date: December 2023.
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Fig. 1. Illustration of the processing of DGNN inference over a snapshot t .

this vertex’s edges [8, 10, 20, 28, 29, 38].Gt can be represented as a adjacency matrix At . The input

feature vector of snapshot t is Ht . Note that At is extremely sparse and Ht is dense [25].

Dynamic graph neural network for DTDG (DGNN) [20, 28, 29, 38]. The inference of DGNN

model [8] operates both GNN module and Recurrent Neural Network (RNN) module [34] on

each snapshot of DTDG, and the snapshots of DGNN are processed one by one [8]. Figure 1 shows

the processing of DGNN model over the snapshot t . In detail, let Yt , At , and Ht represent the final

output states, the input adjacency matrix, and the input features of all vertices over snapshot t ,
respectively. For each vertex v , the GNN module produces v’s intermediate state of snapshot t
through operating Aggregation and Combination phases according to At and Ht [v], where Ht [v]

represents the vertexv’s input feature of snapshot t . After that, RNN module produces the hidden

state St [v] and the final state Yt [v] using v’s intermediate state of snapshot t and the hidden state

St−1[v], whereYt [v] isv’s final output state of snapshot t and St−1[v] isv’s hidden state of snapshot

t-1.
In detail, the computing pattern of GNN on layer k can be represented in Equation (1). After K

layers of propagation, we will get the final features for each vertex over the snapshot t ,

Ht
k [v] = Combinationk (Aддreдationk (Hk−1

t [u]) |∀u ∈ N (v ) ∪ {v}). (1)

Different GNNs differ in the specific functions used for the two key phases. In Graph Convo-

lution Network (GCN) [22], the aggregation processes the gathered features with mean func-

tion to obtain the aggregation result for each vertex (e.g., v) through aggregating the input states

of the vertex v’s neighbors (i.e., N (v )), while the FC-layer-based update computes Ht
k [v] using

the weightsW k .

For the RNN model of DGNN, the output states at snapshot t are calculated based on the input

data at snapshot t and the hidden state at snapshot t-1. This computation involves matrix multi-

plication, element-wise multiplication and addition, and activation functions. We note that DGNN

can be composed of different GNN models (e.g., Graph Attention Network [46]) and RNN models

(e.g., Long Short-Term Memory (LSTM) [56]), which means that DGNN involves diverse and

complex computational patterns.

2.2 Problems of Existing Solutions

When using existing solutions [8, 14, 15, 25, 51, 53] for handling DGNN inference, they suffer

from redundant data accesses and computations across two consecutive snapshots. Specifically,

since two consecutive snapshots evolve slightly [13] in terms of both graph structures and input

features, the computation of GNN for the current snapshot involves the accessing of identical edge

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 53. Publication date: December 2023.
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Fig. 2. Studies of the performance of DGNN inference: (a) the execution time normalized to that of DGNNS

for TM-GCN; (b) the execution time breakdown of I-GCN; (c) the ratio of redundant vertex computations

across two consecutive snapshots to all vertex computations for TM-GCN on I-GCN; (d) the ratio of the

fetched useful data (i.e., after removing the fetched data associated with the redundant computations) to all

fetched data for TM-GCN on I-GCN.

lists and the same input features for most vertices with respect with the previous snapshot. These

redundant data accesses include the following: (1) the accesses to edge lists for unaffected vertices

(which are the vertices with the same input features, one-hop neighbors, and one-hop neighbors’

input features between consecutive snapshots) across consecutive snapshots and (2) the accesses

to input features of the unaffected vertices (such a set of unaffected vertices are called a unaffected

vertices cluster). Because the processing of each vertex needs to access its input feature and its

one-hop neighbors’ input features, the state aggregation and combination for each vertex in the

unaffected vertices cluster is identical for two successive snapshots. Due to the above reasons,

massive redundant data accesses and computations exist in DGNN when using existing solutions.

To demonstrate these issues, we evaluate five state-of-the-art solutions (i.e., DGNNS [8], AWB-

GCN [14], GCNAX [25], ReGNN [9], and I-GCN [15], which recompute all graph data for each

snapshot in DGNNs) by running various DGNN models on different datasets shown in Table 2.

Section 4 depicts the details of the platform and benchmarks. Figure 2(a) shows that I-GCN out-

performs the other solutions in all cases. However, in Figure 2(b), the aggregation phase still con-

sumes the majority of the total execution time (e.g., more than 80.9% on the TM-GCN model over

the dataset FK) for I-GCN. This is because of the following two main problems caused by recom-

puting all the graph data for each snapshot.

Redundant Computation Overhead. We explain it using the example of Figure 3. In this

example, through aggregating the input features of the vertices v0, v1, and v3 associated with the

snapshot t using GCN [22], we can get the final state ofv0 for snapshot t . Similarly, the final states

of v1, v2, v3,v4,v5, and v6 can be obtained. In the same way, we can also get the final states of all

vertices of the snapshot t+1. However, because the weight matrices of all snapshots are the same

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 53. Publication date: December 2023.
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Table 2. Characteristic Statistics of the Real-world Datasets

Datasets #Vertices #Edдes D S T ΔV ↑ ΔV ↓ ΔE ↑ ΔE ↓
Wikidata (WK) [4] 11,134 150,779 1,572 243 3 months 1.49%–2.1% 1.47%–2.92% 1.25%–2.12% 0.24%–1.1%

Academic (AD) [1] 51,060 794,552 2,849 568 1 month 1.14%–1.93% 1.22%–2.31% 0.62%–1.32% 0.61%–1.42%

DBLP (DP) [2] 315,159 1,615,400 25,468 200 1 month 0.76%–0.98% 0.91%–1.28% 0.96%–1.55% 0.93%–1.9%

Mobile (MB) [2] 340,751 2,200,203 13,452 397 1 day 0.98%–1.4% 0.67%–1.24% 1.13%–1.7% 1.10%–2.1%

Flicker (FK) [3] 1,715,256 22,613,981 32,105 134 1 second 0.48%–0.72% 0.31%–0.62% 0.23%–0.52% 0.22%–0.44%

D denotes the number of dimensions of feature vector; S denotes the number of snapshots; T denotes the time

granularity; ΔV ↑ and ΔV ↓ represent the proportion of vertex increase and vertex deletion between two successive

snapshots, respectively; ΔE ↑ and ΔE ↓ represent the proportion of edge increase and edge deletion between two

successive snapshots, respectively.

Fig. 3. An example graph, where the snapshot t+1 is the snapshot t with the deletion of the edge v4→v6,

the addition of the edge v5→v6, and the mutation of v6’s input feature.

andv0 has the same input feature, neighbors, and neighbors’ input features between the snapshots

t and t+1, the final states of v0 of these two snapshots are completely identical for DGNN models.

In other words, v0 is an unaffected vertex across these two snapshots. Therefore, we do not need

to recompute the final state ofv0 of the snapshot t+1 through accessing and aggregating the input

features of bothv0 andv0’s neighbors of the snapshot t+1. Thus, massive redundant computations

and data accesses can be eliminated. As shown in Figure 2(c), although I-GCN outperforms other

solutions for all tested instances, more than 86.7% of vertex computations (i.e., the aggregation and

combination of the vertex states) across two consecutive snapshots are redundant.

Irregular Memory Access. Using existing solutions [8, 14, 15, 25, 51, 53] for the DGNN infer-

ence, the input features of most vertices need frequent off-chip communications for the processing

of each graph snapshot, because the size of these data is typically larger than that of the on-chip

memory [14, 25, 51]. Specifically, for each batch of graph updates, only the input features of a small

portion of vertices need to be loaded for processing in the DGNN models [8], and these graph data

are sparsely dispersed in the off-chip memory. It incurs many irregular memory accesses to these

graph data. Besides, the redundant computations incur many irregular memory accesses to the

same input features for different snapshots, which exacerbates the above problem. As shown in

Figure 2(d), most graph data (more than 86.6%) accessed by I-GCN via off-chip communication are

redundant, because they are the same for two successive snapshots, resulting in the underutiliza-

tion of memory bandwidth and on-chip memory. For the tested cases, the access time of graph

data occupies 93.4%–97.6% of the execution time for I-GCN.

2.3 Similarities in DGNN Inference

Figure 4 shows the statistical studies on the characteristic of DGNNS. We have two observations

regarding DGNN inference in this study, inspiring us to design our solution toward efficient DGNN

inference.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 53. Publication date: December 2023.
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Fig. 4. Performance of TM-GCN model: (a) the ratio of different types of vertices to all vertices; (b) the ratio

of the accesses refer to the input features of the top α vertices to those of all vertices.

Observation one: Most real-world dynamic graphs show strong temporal similarity, which im-

plies that there is substantial overlaps in the input features and neighbors between consecutive snap-

shots. As shown in Figure 4(a), the unaffected vertices between two consecutive snapshots occupy

86.7%–95.9% of all vertices on average for different real-world dynamic graphs, because each batch

of graph updates only affect a small portion of the vertices. It allows us to reuse most vertices’ fi-

nal states of the previous snapshot to incrementally obtain the final vertices’ states of the latest

snapshot quickly.

Observation two: The processing of DGNN models shows strong spatial locality, i.e., most accesses

of input features refer to those of a small set of vertices. We evaluate the proportion of the accesses

referring to the input features of the top α vertices to those of all vertices for the processing of

each snapshot, where the vertices are sorted in the descending order according to the number

of times for which their input features are accessed. Figure 4(b) shows that more than 73.4% of

the accesses refer to the top 0.5% vertices’ input features. Besides, for two successive snapshots,

more than 80.3% of the accesses referring to the input features of the top 0.5% vertices of these

two snapshots are the same on average. That is, most input features of the top 0.5% vertices in the

previous snapshot are still frequently accessed when processing the latest snapshot. It motivates us

to cache these vertices’ input features in the on-chip memory for smaller off-chip communications

across the processing of multiple snapshots.

3 OVERVIEW OF OUR SOLUTION

Based on the above observations, we propose an efficient accelerator RACE, which supports an

effective redundancy-aware incremental execution approach for DGNN inference. This section first

introduces our main idea and then discusses the implementation details of RACE.

3.1 Redundancy-aware Incremental Execution Approach

In this subsection, we present our redundancy-aware incremental execution approach, which can

correctly and incrementally refine the results of the previous graph snapshot to quickly obtain the

results for the latest graph snapshot and also enable regular accesses of vertices’ input features.

The details of our proposed approach are introduced below.

3.1.1 Redundancy-aware Incremental Processing. In fact, if all n-hop neighbors of a vertex (e.g.,

vroot ) are unaffected vertices across two successive snapshots (e.g., the snapshots t and t+1 in

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 53. Publication date: December 2023.
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ALGORITHM 1: Redundancy-aware Incremental Processing

1: � Identify the unaffected vertices

2: for each vertex v ∈ Gt+1 do

3: if v’s neighbors and their input features are the same between the snapshots t and t + 1

then

4: v is set as an unaffected vertex

5: end if

6: end for

7: � Calculate the n-hop aggregation dependency

8: for each vertex v ∈ Frontier do /*the nth BFS level*/

9: Insert v’s neighbors into the nth BFS level

10: end for

11: for each vertex u ∈ the nth BFS level do

12: if all direct neighbors of u ∈ Frontier then

13: u has n-hop aggregation dependency

14: end if

15: end for

Figure 3), then we can consider that a dependency (called as n-hop aggregation dependency) exists

between these two snapshots for this vertex (i.e., vroot ). Under such circumstances, as proved in

Section 3.1.3, this vertex’s state on the nth layer of the snapshot t+1 keeps the same with that on

the nth layer of the snapshot t . Thus, we can correctly reuse the state of this vertex on the nth

layer of the snapshot t as its state on the nth layer of the snapshot t+1. This indicates that all state

computations before the (n+1)th layer of the snapshot t+1 can be skipped for this vertex (i.e.,vroot ),

significantly reducing the redundant computations and data accesses.

To efficiently identify the vertices’ states that can be reused across multiple snapshots, as shown

in Algorithm 1, it takes all unaffected vertices as the roots to cooperatively traverse the graph

together in a breadth-first fashion on the fly to calculate n-hop aggregation dependency1 for the

vertices. Specifically, as shown in Figure 5, it obtains the unaffected vertices (e.g.,v0,v1,v2, andv3 in

Figure 3) and takes these vertices as the roots to traverse the graph. In Figure 5(a), it first calculates

the one-hop aggregation dependency between two successive snapshots (e.g., the snapshots t and

t+1 in Figure 3) for the vertices at the first BFS level. We can consider that v0, v1, and v2 have one-

hop aggregation dependency, because all direct neighbors of these vertices are unaffected vertices.

At the second BFS level, as depicted in Figure 5(b), it can calculate two-hop aggregation dependency

for v1 and v2, because all direct neighbors of these vertices have one-hop aggregation dependency.

Then, at the third BFS level, as shown in Figure 5(c), the three-hop aggregation dependency will

be calculated for v2 because all direct neighbors of v2 have two-hop aggregation dependency. With

these n-hop aggregation dependencies, many redundant computations and data accesses can be

eliminated. For example, becausev2 has a three-hop aggregation dependency,v2’s state on the third

layer of the snapshot t can be reused as its state on the third layer of the snapshot t+1, sparing the

computations of v2’s state on the first, second, and third layers of the snapshot t+1.

3.1.2 Topology-aware Data Caching. To further reduce the data access cost for DGNN, we al-

leviate the problem of irregular memory accesses via exploiting the spatial locality of DGNN.

1Note that if all direct neighbors of a vertex have (n-1)-hop aggregation dependency across two successive snapshots, then

this vertex has a n-hop aggregation dependency between these two snapshots.
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Fig. 5. Calculation of n-hop aggregation dependency.

Specifically, as shown in Figure 4(b), in the DGNN processing, most accesses of input features

usually refer to those of a small set of vertices for the real-world graphs [16]. What is more, the

input feature of a vertex would be accessed more times when this vertex has more neighbors that

are not the unaffected vertices across two successive snapshots, because these neighbors need to

access this vertex’s input feature to recompute their states. Thus, before the processing of a snap-

shot, we can profile the number of each vertex’s neighbors that are not the unaffected vertices

across this snapshot and the previous snapshot and use this number to approximately predict the

access frequency of this vertex’s input feature in the processing of this snapshot.

Then, the most frequently accessed input features during the processing of this snapshot can

be preferentially cached in the on-chip memory to achieve better data locality for the accesses

to these input features. Besides, most cached input features can be reused in the processing of

multiple snapshots, because the frequently accessed input features in the current snapshot are

still frequently accessed in the processing of the latter snapshots. In other words, our approach

enables one off-chip communication to serve multiple vertex state computations (which need to

access the off-chip memory more times in existing solutions).

3.1.3 Correctness of Our Approach. This subsection proves the correctness of our redundancy-

aware incremental execution approach. First, for each vertex with one-hop aggregation dependency

between two successive snapshots, this vertex’s state on the first layer of the current snapshot is

the same as that of the previous snapshot, because the input features, neighbors, and neighbors’

input features are the same for this vertex across the first layer of these two successive snapshots

and the weight matrix W is shared with all snapshots. Next, we prove the following theorem to

ensure the correctness of our approach under any circumstance.

Theorem 1. If a vertex v has n-hop (n > 1) aggregation dependency between two successive snap-

shots, thenv’s state on the nth layer of the current snapshot is the same as that on the nth layer of the

previous snapshot.

Proof. We use inductive hypothesis to prove it. When n = 1, it is correct as the above described.
Then, assume that it is correct for n-1, and we need to prove it is correct for n. It can be obtained
that Hn

t (v ) = GNN (At ,H
n−1
t (N (v ))),W ) according to the definition of GNN, where N (v ) and

Hn
t (v ) denote the neighbors and input feature of v on the nth layer of snapshot t , respectively. In
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this case, we have

Hn−1
t (v ) = GNN

(
At ,H

n−2
t (N (v )) ,W

)
(2)

= Hn−1
t+1 (v )

= GNN
(
At+1,H

n−2
t+1 (N (v )) ,W

)
.

After substituting Equation (2) into Equation (3), we have

Hn
t (v ) = GNN

(
At ,H

n−1
t (N (v )) ,W

)
(3)

= GNN
(
At ,GNN

(
At ,H

n−2
t (N (N (v ))) ,W

)
,W
)

= GNN
(
At ,GNN

(
At+1,H

n−2
t+1 (N (N (v ))) ,W

)
,W
)

= GNN
(
At ,H

n−1
t+1 (N (v )) ,W

)
.

Because the vertex v has n-hop (n ≥ 1) aggregation dependency between the snapshots t and
t + 1, according to the definition, we have

Hn
t (v ) = GNN

(
At ,H

n−1
t+1 (N (v )) ,W

)
(4)

= GNN
(
At+1,H

n−1
t+1 (N (v )) ,W

)

= Hn
t+1 (v ).

Equation (4) shows that the state of v on the nth layer of the current snapshot t+1 is the same

as that on the nth layer of the previous snapshot t and also proves the correctness of our approach.

Now, we can conclude that the state of v is the same for two successive snapshots if this vertex

has n-hop (n ≥ 1) aggregation dependency between these two snapshots. �

3.1.4 Benefits of Customization. Although our redundancy-aware incremental execution ap-

proach ensures much fewer redundant computations and data accesses, the software-only im-

plementation of our approach suffers from high runtime cost on existing architectures (see

Figure 11(a)) due to the following two reasons. First, our approach needs to track the unaffected

vertices through irregularly traversing the graph on the fly. Such irregularity makes our approach

ill suited to the processing elements (PEs) and the memory hierarchy of the general-purpose

processors (e.g., CPU and GPU). Second, our approach incurs additional instructions and also low

instruction level parallelism in the general-purpose processors due to the data-dependent branches

(which depend on irregular graph structures) of these instructions. Such high runtime overhead

outweighs the performance improvement brought by our approach in general-purpose processors.

To tackle the inefficiency and non-adaptability of existing architectures, there is an urgent need

for a custom accelerator for efficient execution of DGNN inference by efficiently supporting our

approach. It is because that the custom accelerator can use customized PEs with multiple specific

hardware pipelines to accelerate the operations and run them with the dataflow style of parallelism.

Besides, it can use specialized memory hierarchy to obtain the higher memory-level parallelism,

better data locality, and the shorter data access latency. The experiments show that our accelerator

significantly outperforms existing solutions.

3.2 RACE Overview

To achieve lower redundant computation and data access overhead, we design RACE, a customized

accelerator for efficient DGNN inference. RACE contains two key hardware units (i.e., redun-

dancy identification unit (RIU) and redundancy-aware processing unit (RPU)) and on-chip

buffers, as depicted in Figure 6. The RIU computes the n-hop aggregation dependency for each ver-

tex and stores the computed dependency in a queue, called Dependency_Queue, where each entry
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Fig. 6. Architecture of RACE.

stores the hop n for each vertex. The RPU follows RIU and conducts incremental computation of

DGNN inference (i.e., GNN module and RNN module) to eliminate GNN operations for vertices in-

volving redundant computation by consulting the Dependency_Queue and forwards the remaining

vertices to the GNN units. The outputs of the GNN units are fed into the RNN units to produce the

final results of current snapshot. Both the GNN unit and RNN unit have multiple PEs, and each

PE has multiple multiply and accumulate units (MACs). Since the elimination of redundant

GNN operations increases the sparsity of adjacency matrices, the GNN unit adopts columnwise

sparse matrix matrix multiplication as AWB-GCN [14]. The on-chip buffers are used to cache dif-

ferent types of data to reduce off-chip communications. The main functionalities of RIU, RPU, and

on-chip buffers are as follows.

RIU. The RIU has two types of components: the identification unit (IU) and the traversal

engine (TE), as shown in Figure 6. The IU reads and compares the input features in two consecu-

tive snapshots to mark the vertices with immune input features across these two snapshots. The

comparison result of each vertex is stored in a bitmap, i.e., Immune_Bitmap, which is used to indi-

cate whether a vertex’s input feature is immune across two successive snapshots. For each vertex,

the IU further detects whether this vertex’s one-hop neighbors and their input features are immune

across two successive snapshots and updates the queue, i.e., Unaffected_Vertex_Queue, which stores

the IDs of all vertices in the unaffected vertices cluster. The TE determines whether a vertex has

n-hop aggregation dependency with the help of the Unaffected_Vertex_Queue. If a vertex has n-hop

aggregation dependency, then the value stored in the Dependency_Queue’s entry associated with

this vertex is updated to n, where n∈[1, N ] and N is the number of GNN layers. The vertex v’s

Dependency_Queue entry with the value of n indicates that the calculation of the hidden features

of v for the first n GNN layers can be eliminated.

RPU. The RPU contains an Incremental Processing Unit (IPU), a Dynamic State Correc-

tion Unit (DSCU), and multiple PEs. The IPU decides whether the GNN computation of the layer

n for a vertex v can be skipped, to avoid the redundant computation. If the value (e.g., k) of the

Dependency_Queue entry for the vertxv is larger than or equal to n (i.e., k ≥ n), then the computa-

tions ofv’s hidden features for the first n GNN layers can be removed. Otherwise, the DSCU needs

to assign and perform the computing of the hidden feature of v for the (k + 1)th GNN layer of the

latest snapshot on the PEs. When all GNN layers have been processed for the current snapshot, the
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Fig. 7. Workflow of RACE.

outputs of the last GNN layer are used by the RNN to produce the latest snapshot’s final results.

The weight matrices of both GNN and RNN are cached in the Weight_Buffer.

On-chip Buffers. RACE has multiple on-chip buffers, e.g., IF_Buffer, GS_Buffer, and Weight_

Buffer, to isolate the accesses of different types of data (e.g., input features, graph structure data, and

weight matrices). This can avoid frequent data thrashing among different types of data. To fully and

efficiently exploit the spatial locality of the DGNN, we also use our topology-aware data caching

scheme with hardware implementations to avoid the data thrashing of the frequently accessed

input features, and the access frequency of each vertex is recorded in a table, i.e., Frequency_Table.

The Workflow of RACE. The processing of each snapshot for DGNN includes both GNN and

RNN operations. For the processing of the first snapshot, the RACE computes the hidden features

for each vertex in all GNN layers, and the hidden features of the last GNN layer are forwarded to

the RNN unit. The computed hidden features of the GNN layers are stored in the off-chip memory

and are prepared for their potential reuse in the next snapshot.

After that, as shown in Figure 7, upon an arrival of a snapshot t+1, RACE loads the data from the

off-chip High Bandwidth Memory (HBM) to the on-chip SRAM (step ❶). The RIU compares the

input features and graph topology of the current snapshot t+1 and the previous snapshot t (step ❷),

determines whether a vertex has n-hop aggregation dependency, and updates Dependency_Queue

(step ❸). The operations of RIU are done after processing all vertices. Then, if the value of a vertex

(e.g., v) in the Dependency_Queue is larger than or equal to n, then the RPU can avoid the compu-

tation of the hidden features ofv for the first n GNN layers by reusing the states of the first n GNN

layers computed in the previous snapshot, respectively (step ❹). Otherwise, the RPU instructs the

GNN units to conduct user-defined GNN operations (e.g., GCN [22] of CD-GCN [29]) to compute

the states of the remaining GNN layers for v . When the processing of GNN is done, the RNN

unit is then initiated to conduct user-defined RNN operations (e.g., LSTM [34] of CD-GCN [29]

and M-transform [28] of TM-GCN [28] ) to compute the final results of the current snapshot t+1

(step ❺).

3.3 Hardware Design

This subsection describes the details of the key components of RACE. Note that each graph snap-

shot is stored in the Compressed Sparse Row (CSR) [8, 25, 27, 33] format by default, because

CSR is the most popular format. Specifically, three arrays, i.e., Offset_Array, Neighbor_Array, and

Vertex_Feature_Array, are used. The Offset_Array records the beginning and end offsets of each ver-

tex’s neighbors in the Neighbor_Array, while the Neighbor_Array stores the outgoing neighbors for

each vertex. Vertex_Feature_Array maintains the algorithm-specific feature for each vertex. Note

that, like HyGCN [51], each snapshot is divided into multiple partitions, which are maintained in

the off-chip HBM. When the required data are not maintained in the on-chip SRAM, the relevant

partition is retrieved from the off-chip HBM.
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Fig. 8. Microarchitecture of RIU.

3.3.1 Microarchitecture of RIU. Upon receiving a new snapshot, the RIU begins to compute the

n-hop aggregation dependency between the current and the previous snapshots for each vertex.

Figure 8 describes the microarchitecture of RIU. The RIU first updates Immune_Bitmap and cal-

culates the unaffected vertices cluster and then obtains the n-hop aggregation dependency through

traversing the graph accordingly.

Identification of Unaffected Vertices. For each vertex, the IU updates Immune_Bitmap and

calculates the unaffected vertices cluster through fetching and comparing its input feature, its one-

hop neighbors, and these neighbors’ input features from the previous snapshot t and the current

snapshot t+1. To efficiently identify the unaffected vertices across these two snapshots, five stages,

i.e., Fetch_Vertex, Fetch_Offsets, Fetch_Neighbors, Fetch_Features, and Compare_Data, are performed,

which are implemented as a pipeline, i.e, the Identification Pipeline, as shown in Figure 8.

In detail, the Fetch_Vertex stage sequentially scans the vertices of the snapshots t and t+1 and

outputs the ID of the same vertices (e.g., vi ) of these two snapshots. Then, the Fetch_Offsets stage

fetches the beginning and end offsets of vi ’s neighbors from the Vertices_array of the snapshots t
and t+1, respectively. Next, the IDs ofvi ’s neighbors are fetched by the Fetch_Neighbors stage from

the Edges_Array for the snapshots t and t+1, respectively. In the Fetch_Features stage, the input

features of vi and vi ’s neighbors are fetched from the Vertex_Feature_Array for the snapshots t
and t+1, respectively. Finally, the Compare_Data stage checks whether vi ’s input features of the

snapshots t and t+1 are different. If so, then nothing will be done. Otherwise, the corresponding

entry of vi in the Immune_Bitmap is set as 1, which indicates that vi has the same input feature

across the snapshots t and t+1. Then, it further identifies whether vi ’s neighbors and their input

features are immune across the snapshots t and t+1. If so, then vi ’s ID is inserted into the Unaf-

fected_Vertex_Queue. Otherwise, andvi is set as an affected vertex and is sent to the RPU. Note that

if the corresponding entry of a vertex (e.g., vj ) in the Immune_Bitmap is 1 (which indicates that

the input features Ht [vj ] and Ht+1[vj ] are the same), then the accesses and comparison of Ht [vj ]

and Ht+1[vj ] can be skipped. To balance the pipeline design, RACE replicates the Fetch_Neighbors

and Fetch_Features units and parallelizes their accesses.

Calculation ofn-hop aggregation dependency. When the unaffected vertices cluster has been

obtained by the IU, the TE of RIU calculates the n-hop aggregation dependency between the snap-

shots t and t+1 for each vertex by taking the unaffected vertices as the roots to cooperatively

traverse the snapshot t+1 in a breadth-first fashion on the fly.
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Fig. 9. The values in the data structures during the calculation of n-hop aggregation dependency.

To efficiently calculate the n-hop aggregation dependency in parallel, TE evenly divides the Un-

affected_Vertex_Queue into several continuous ranges and multiple Traversal Pipelines are used.

Each Traversal Pipeline is responsible for the graph traversals originated from the vertices in a

continuous range of the Unaffected_Vertex_Queue. Each pipeline has five stages, i.e., Fetch_Root,

Fetch_Offsets, Fetch_Neighbors, Identify_Vertices, and Calculate_Dependency, which are managed

by a Traversal Finite State Machine. During the graph traversal, a register is employed to record

the value of the current BFS level (i.e., L), and a queue (i.e., Intermediate_Queue) is used for each

vertex to store the number of its direct neighbors with (L-1)-hop aggregation dependency. Note that

the initial value of L is 1, and each vertex’s initial value in Intermediate_Queue is 0.

During the graph traversal, for each pipeline, as shown in Figure 8, in the Fetch_Root stage,

it sequentially fetches a vertex (e.g., v2 in Figure 9) from its corresponding range of the Unaf-

fected_Vertex_Queue. Then, the Fetch_Offsets stage fetches the beginning and end offsets ofv2 from

the Offset_Array of the snapshot t+1. In the Fetch_Neighbors stage,v2’s neighbors are fetched from

the Neighbor_Array of the snapshot t+1, and the values associated with these fetched neighbors

in Intermediate_Queue are increased by one, respectively. The above four stages repeat until all

vertices in the Unaffected_Vertex_Queue have been traversed.

The Calculate_Dependency stage identifies whether the value associated with each vertex in In-

termediate_Queue equals the number of this vertex’s neighbors, which is obtained by subtracting

this vertex’s beginning offset from its end offset (the beginning and the end offsets can be obtained

from the Offset_Array). If so, then the ID of this vertex (e.g.,v2 in the third BFS level of Figure 9) is

inserted into the Unaffected_Vertex_Queue and v2’s value stored in the Dependency_Queue’s entry

is updated to be L (e.g., L=3 in the third BFS level). It means thatv2 has three-three-hop aggregation

dependency between the snapshots t and t+1, since all direct neighbors of v2 have two-hop aggre-

gation dependency across these snapshots. To approximately evaluate the access frequency of each

vertex’s input feature, the Calculate_Dependency stage also calculates the number of the Lth hop

neighbors that are not the unaffected vertices for this vertex.

When all vertices in the Intermediate_Queue have been processed in the Calculate_Dependency

stage, the value of L is set to L+1 and the value of each entry in Intermediate_Queue is initial-

ized with 0. The above five stages repeat until there is no vertex in the Unaffected_Vertex_Queue.

Note that, RACE replicates the Fetch_Neighbors unit and parallelizes their accesses to balance the

pipeline.

3.3.2 Microarchitecture of RPU. According to then-hop aggregation dependency obtained by the

RIU, the RPU is employed to reuse the results of the previous graph snapshot to quickly obtain the

results for the current graph snapshot. Specifically, the RPU processes each snapshot t+1 layer by

layer for GNN. When processing a vertex (e.g., v) in a GNN layer (e.g., the nth GNN layer) for the

snapshot t+1, the IPU of RPU first scans the Dependency_Queue to identify whether the value (e.g.,

k) of the Dependency_Queue entry associated with this vertex v is larger than or equal to n. If so,
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Fig. 10. Microarchitecture of RPU.

then IPU directly reuses v’s state of the nth GNN layer of the previous snapshot t as that of v for

the nth GNN layer of the current snapshot t+1, thereby skipping many redundant computations.

Otherwise, the DSCU of RPU fetches the graph data (i.e., its input feature, its neighbors, and these

neighbors’ input features) associated with this vertex v of the current snapshot t+1 to recompute

its state for the nth GNN layer of the snapshot t+1 on the GNN units.

In detail, as shown in Figure 10, IPU judges whether the value of a vertex in the Depen-

dency_Queue is greater than or equal to n by using the comparator. The comparator (e.g., Comp.1)

compares the L value of the vertex ID with the constant value n and outputs the final result. The

output result is then saved in a hash table in the form of a triple <ID, L, Value> (step ❶), where

ID is the vertex (e.g., v) with aggregation dependency in the current snapshot t+1, L denotes the

vertex v’s state of the Lth GNN layer of the previous snapshot t is identical with the current snap-

shot t + 1, and Value is the output state of v in the Lth layer of GNN of the previous snapshot.

To further accelerate this process, RPU employs multiple comparators and works in a pipeline

manner. Specifically, multiple comparators are used to compare the L value of the vertex ID with

a sequence of constant values: 1, 2, . . . ,n. Note that IPU keeps the constant value n in the register.

The comparators are connected in a pipeline manner, with the output of one comparator serving

as the input to the next one.

When a comparator (e.g., Comp.1) compares the L value of the vertex ID with the constant value

1 and outputs a match signal, the data is stored in the hash table. If the data does not match, then

it is passed to the next comparator (i.e., Comp.2) in the pipeline, which compares the L value of

the vertex ID with the constant value 2. This process continues until the data matches one of the

comparators in the pipeline. Using this pipeline of comparators, greatly improves the efficiency

of the value-matching process. To prevent pipeline stalls and efficiently fetch the Value of vertex

v of previous snapshot t , because they are stored in the off-chip memory (step ❸), three stages

are implemented by the Memory Access (MA) as a pipeline (step ❷). First, in the Fetch_Offsets

stage, MA fetches the beginning and end offsets of v’s neighbors from the Vertices_array of the

current snapshot. Second, in the Fetch_Neighbors stage, the IDs of v’s neighbors are repeatedly

fetched from the Edges_Array. Finally, in the Fetch_Features stage, MA fetches the input features

or the states of v and v’s neighbors of the Lth layer of the GNN of the previous snapshot from the

off-chip HBM or on-chip SRAM accordingly.

To efficiently fetch and process the graph data of v for its recomputation of a GNN layer of the

snapshot t+1, DSUC uses multiple MA pipelines to accelerate the memory access of the vertex

v (step ❸). The GNN and RNN task scheduler (tSched) guarantees the pipeline execution and

assigns the workloads to the PE group, which works in a task disperse aggregation mode similar

to HyGCN [51] for workload balance and task-level parallelism (step ❹). To minimize the data

movement, RPU adopts a few-to-all PE crossbar between different compute units, which has been
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widely used in neural network accelerators and can effectively reduce the number and area of the

crossbar. To efficiently support DGNN computations, RPU proposed a unique PE that supports

both GNN computation and RNN computation.

Specifically, each PE unit contains a multiplier and an adder. There are four multiplexers (MUX)

inserted between the multiplier and adder, and one MUX inserted before the multiplier. As shown

in Figure 10, the first MUX on the left is used to select the current computation pattern, that is,

whether to perform GNN computation or RNN computation. If the GNN computation is to be

performed, then MUX will select the graph data of the affected vertices that need to be computed

in the current snapshot. Otherwise, the MUX will choose to obtain the time information of the

RNN in the previous snapshot and the intermediate states of GNN in the current snapshot. Then,

the two MUXs on the left are flipped in each cycle to ensure that data is evenly transmitted to the

two input ports of the adder, while the two MUXs on the right select the adder’s input as the input

of the PE or the output of the multiplier. The output of the adder is then sent to the partial output

queue for accumulation. Finally, before the output queue, a MUX is used to select the appropriate

output from the multiplier or the adder.

However, when the GNN computation of the affected vertices is not completed, the RNN unit

will be idle, because the outputs of the last GNN layer are fed into the RNN units to produce the final

results of the current snapshot t+1, resulting in lower hardware resource utilization. To address

this issue, tSched of DSCU assigns GNN computations to idle computing units within the RNN

unit. In this way, the GNN unit and RNN unit can be further assembled together to form a large

computation unit, which enables a larger set of elements to perform matrix–matrix multiplication

and element-wise multiplication/addition operations simultaneously.

3.3.3 Topology-aware Memory Hierarchy. The memory hierarchy is shown in Figure 6. Eight

on-chip SRAM buffers, i.e., IF_Buffer, GS_Buffer, Weight_Buffer, DQ_Buffer, IB_Buffer, UVQ_Buffer,

FT_Buffer, and IQ_Buffer, are used to cache the input features, graph structure data, weight ma-

trices, Dependency_Queue, Immune_Bitmap, Unaffected_Vertex_Queue, Frequency_Table, Intermedi-

ate_Queue, respectively, aiming to exploit data locality to reduce data access latency. With these

buffers, the different types of data are isolated effectively, avoiding the potential access conflicts

and data thrashing between them. When the memory requests (e.g., requested by different stages

of the pipelines in RIU) are generated, these requests are assigned to a FIFO request buffer so as to

access the data in the corresponding on-chip SRAM buffer in parallel.

To fully leverage the spatial locality of DGNN for smaller data access cost, RACE preferentially

caches the frequently accessed input features in the IF_Buffer, while the other input features are

directly fetched from the off-chip memory on demand. Specifically, RACE employs our proposed

topology-aware data caching scheme to manage the IF_Buffer. It uses a threshold TD to record

the lowest value of the access frequency of all input features cached in the IF_Buffer, where the

initial value of TD is zero and is updated by RACE at runtime. The access frequency of each input

feature is profiled by RIU. For each input feature (e.g., Ht [v]) fetched from the off-chip memory,

RACE determines whether the access frequency of Ht [v] is less than the value of TD. If so, then

Ht [v] will not be cached in the IF_Buffer. Otherwise, an input feature with the access frequency

equals to TD is dynamically evicted from the IF_Buffer, and Ht [v] is then cached in the IF_Buffer

at runtime. The value of TD is also updated as the minimum value of the access frequencies of

all input features cached in the IF_Buffer at this moment. Note that the fetched input feature is

directly cached in the IF_Buffer if it is not full.

By such means, the input feature with the highest access frequency can be cached and directly

obtained from the IF_Buffer, thereby achieving lower access latency and high utilization of the on-

chip SRAM. Since the frequently accessed input features in the current snapshot are still frequently
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Table 3. System Configurations of Compared Accelerator

AWB-GCN GCNAX ReGNN I-GCN RACE

Compute 1 GHz @ 4096 MACs 1 GHz @ 1 × 16 MAC array

1 GHz @ 512 A-PEs,

2 × 16 P-PEs with radix-64

float tree adder and

2 systolic modules

(each with 32 × 128 arrays)

1 GHz @ 4096 MACs

1 GHz @ 4096 MACs,

8 IUs and 8 TEs,

1 DSCU, and 1 IPU

On-chip Memory 12 MB 4 MB 20 MB 12 MB 4 MB

Off-chip Memory 256 GB/s HBM 2.0 256 GB/s HBM 2.0 256 GB/s HBM 2.0 256 GB/s HBM 2.0 256 GB/s HBM 2.0

Table 4. Parameter Details of RACE on Xilinx Alveo U280 FPGA

Processing units 280 MHz @ 4096 MACs, 8 IUs, 8TEs, 1 DSCU, and 1 IPU

On-chip memory IF_Buffer (2 MB), GS_Buffer (1 MB), GS_Buffer (1 MB), DQ_Buffer (32 KB), IB_Buffer

(16 KB), UVQ_Buffer (24 KB), IQ_Buffer (48 KB), and FT_Buffer (32 KB)

Off-chip memory 256 GB/s HBM 2.0

accessed by the processing of the next snapshot, the cached input features can typically serve the

processing of multiple snapshots, ensuring better data locality in DGNN.

4 EVALUATION

4.1 Experimental Setup

Hardware Simulator. To evaluate the performance of our accelerator RACE, we have built a

cycle-accurate simulator. This simulator models each module of RACE faithfully and the modules’

timing behaviors are co-verified with the synthesized RTL design. The simulator is also integrated

with Ramulator [21], which supports HBM to estimate HBM timings and produce a command

trace.

ASIC Synthesis. We implement and synthesize each module to measure the area, power, and

critical path delay (in cycles). The Synopsys Design Compiler with the TSMC 12-nm library is used

for the synthesis, and Synopsys PrimeTime PX is used to estimate the power. The area, power, and

access latency of on-chip buffers are estimated using Cacti [36].

Baselines. The performance of RACE is compared with seven solutions, i.e., DGL (v0.9.0) [48],

DGNNS-CPU, DGNNS [8], AWB-GCN [14], GCNAX [25], ReGNN [9], and I-GCN [15]. DGL is the

most popular GNN framework. DGNNS is the state-of-the-art framework for DGNN. Both DGL

and DGNNS run on the NVIDIA Tesla A100 with 6,912 cores and 80 GB HBM. DGNNS-CPU is the

version of DGNNS running on the CPU platform (which has an Intel Xeon 6151 processor with

65 cores at 3.0 GHz and 696 GB DRAM). AWB-GCN, GCNAX, ReGNN, and I-GCN are the state-

of-the-art GCN accelerators. Similarly to ReGNN [9], these accelerators run at 1 GHz, and their

hardware configurations are listed in Table 3. We also conducted FPGA-based implementations to

validate the RACE simulation infrastructures. Specifically, we have implemented RACE on a Xilinx

Alveo U280 FPGA card, which is equipped with a XCU280 FPGA chip. The FPGA provides 9-MB

BRAM resources, 1.3-M LUTs, 2.6-M Registers, 9,024 DSP slices, and two 4-GB HBM2 stacks. In ad-

dition, we use the BRAM resources to implemente the on-chip memory of RACE. More parameter

details of RACE are listed in Table 4. We employ Xilinx Vivado 2019.1 to obtain the clock rate of

RACE and conservatively use 280 MHz in our experiments. The resource utilization of all models

are reported in Table 5. Although the existing state-of-the-art static GNN accelerators cannot di-

rectly support DGNN inference, we divide the workload of DGNN into two parts, enabling it to be

translated into static GNN and RNN workloads. (1) The first part is pre-processing each snapshot

of the input graph to conform to the input format of the existing accelerators. For instance, in

the case of ReGNN [9], an additional edge feature array must be added besides the current graph
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Table 5. Resource Utilization on Xilinx

Alveo U280 FPGA

Resource CDA-GNN GC-LSTM TM-GCN

DSP 24.3% 17.5% 21.4%

LUT 34.7% 26.3% 24.2%

FF 31.4% 29.4% 39.1%

BRAM 42.1% 46.2% 44.5%

snapshot in the CSR format. Note that the time taken for this part is not considered in the DGNN

inference time. (2) The second part is handling GNN and RNN computations of DGNN separately

in the existing GNN accelerators. After GNN computations are completed, these intermediately

states of GNN are stored in off-chip memory, and then the final result is output after completing

the RNN computations. This is because the existing GNN accelerators cannot simultaneously sup-

port GNN and RNN computations. The communication time between GNN and RNN computation

units is included in the DGNN inference time. Note that, to evaluate our software approach, we

have also modified DGL to use our redundancy-aware incremental execution approach to support

DGNN inference, and this software implementation is called RACE-S. Note that RACE-S runs on

the above NVIDIA Tesla A100 in the following experiments, and it outperforms RACE-S running

on the above CPU platform by 11.3× on average. To further verify the effectiveness and irreplace-

ability of each hardware module in RACE, we implemented the version of RACE using I-GCN

to perform GCN computation, and this hardware implementation is called RACE-I. The reported

results are measured for end-to-end system.

DGNN Models. To evaluate the performance of RACE, three typical DGNN models, i.e., CD-

GCN [29], GC-LSTM [10], and TM-GCN [28], are used. For RNN operation, both CD-GCN and

GC-LSTM use the typical LSTM [34], and the TM-GCN model uses M-transform [28], which is a

parameter-less temporal aggregation mechanism. The number of layers are five, three, and three

for CD-GCN, GC-LSTM, and TM-GCN, respectively. CD-GCN contains three graph convolution

layers, one LSTM layer, and one fully connected layer. GC-LSTM has two graph convolution lay-

ers and one LSTM layer. TM-GCN has two graph convolution layers and one M-transform layer.

Note that EvolveGCN [38] updates the weights along the timeline, AWB-GCN [14], GCNAX [25],

ReGNN [9], and I-GCN [15]) cannot support EvolveGCN [38]. Therefore, we did not use it as the

benchmark.

Dynamic Graph Datasets. Table 2 lists the five real-world dynamic graph datasets used in

the evaluation, namely Wikidata (WK), Academic (AD), DBLP (DB), Mobile (MB), and Flicker (FK),

where the graph edges are undirected. These datasets are characterized by various properties such

as the number of vertices, edges, dimensions of feature vectors, number of snapshots, time granu-

larity, and update statistics.

4.2 Experimental Results

4.2.1 Comparison with Software Approaches. Figure 11(a) shows the normalized execution time

of different solutions over the TM-GCN model, where the execution time is broken down into mem-

ory access time, computation time, and the runtime overhead. This figure shows that the overall

performance of RACE-S is superior to DGNNS, because DGNNS needs much more computation

time and data access time than RACE-S. As shown in Figure 11(a), the memory access time of

DGNNS is 8.6×–19.8× more than that of RACE-S for our tested instances. It is because DGNNS

needs to recompute all graph data for each graph snapshot and suffers from significant redundant

memory access overhead. Figure 11(b) shows the computation time breakdown of Figure 11(a).

We can find that RACE-S reduces 86.7%–95.9% redundant computation time of DGNNS for the
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Fig. 11. Performance of different systems normalized to that of DGL over the NVIDIA Tesla A100.

Fig. 12. Performance of different schemes normalized to that of DGNNS-CPU.

Fig. 13. Performance of different schemes normalized to that of AWB-GCN.

TM-GCN model, because RACE-S only needs to refine a very small proportion of the results of the

previous snapshot to get the final results for the latest snapshot.

However, because RACE-S suffers from high runtime cost, RACE-S only outperforms DGNNS

slightly. Figure 11(a) shows that the runtime overhead occupies 85.6%–96.3% of RACE-S’s total exe-

cution time. It is because that RACE-S needs much time to traverse the graph on the fly and refine

the results of previous snapshot. Compared with RACE-S, RACE not only ensures fewer redun-

dant computations and memory accesses but also reduces the runtime cost of RACE-S, thereby

enabling much better performance than existing solutions. Figure 12 shows that RACE outper-

forms DGNNS-CPU and DGNNS by 1038.4×–1240.8× and 111.8×–157.6×, respectively.

Note that the execution time to identify redundancy takes 14.9%–23.5% of RACE’s total execu-

tion time, and the off-chip memory transfers that are used to identify redundancy take 15.3%–23.8%

of RACE’s total off-chip memory transfers.

Figure 12 also presents the performance contribution from different hardware units of RACE. It

shows that RACE outperforms RACE-without (i.e., only the units associated with the redundancy-

aware incremental processing are enabled while the units associated with the topology-aware data

caching scheme are disabled) by 1.8×–2.6×, because the topology-aware data caching scheme can

fully exploit the spatial locality in the DGNN models to ensure better data locality.

4.2.2 Comparison with Hardware Accelerators. Figure 13 shows that RACE outperforms AWB-

GCN, GCNAX, ReGNN, and I-GCN by on average 13.1×, 11.7×, 10.4×, and 7.9×, respectively,

because RACE can significantly reduce the redundant computation and data access overhead.

Figure 14 depicts the volume of off-chip memory transfers of the accelerators normalized to
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Fig. 14. Off-chip memory traffic of different types of data for different accelerators.

Fig. 15. Execution time of various schemes normalized to that of I-GCN.

that of AWB-GCN on TM-GCN. We can observe that I-GCN requires smaller volume of off-chip

memory transfers than both AWB-GCN and GCNAX for the DGNN inference because of its bet-

ter data locality and less computations. However, in Figure 14, the volume of off-chip memory

transfers of I-GCN is still 4.2×–8.1× more than that of RACE. As shown in Figure 15, RACE-I

performs worse than RACE, because I-GCN cannot use the information of n-hop aggregation

dependency to perform incremental computations and needs to recalculate all vertices on each

snapshot. Thus, RACE can effectively perform incremental computation when processing DGNN

inference. Figure 16 shows the volume of off-chip memory transfers associated with different types

of vertices normalized to that of AWB-GCN on TM-GCN. Most off-chip memory transfers (account

for 83.1% of all off-chip memory transfers on average) of I-GCN refer to the unaffected vertices of

multiple snapshots. Compared with I-GCN, RACE can avoid many redundant computations across

multiple snapshots for DGNN, significantly reducing the off-chip memory transfers.

4.2.3 Area and Power Overhead. The total area of RACE is only 4.73 mm2 under TSMC 12-nm

technology. Figure 17 shows the area breakdown of the major components of RACE. The results

show that most area is contributed by on-chip SRAM buffers and MAC arrays, which occupy 78.4%

of the total area, while the total area of IU, TE, IPU, and DSCU only occupies 16.9%. It indicates that

the IU, TE, IPU, and DSCU are designed to introduce only a small amount of area overhead, but

it can significantly eliminate the redundancy in DGNNs and reduce the computation and off-chip

communication. Figure 18 depicts the energy savings of RACE. The energy savings of RACE are

2002.4×–2482.2× and 198.9×–269.5× higher than that of DGNNS-CPU and DGNNS, respectively.

Compared with existing hardware accelerators, i.e., AWB-GCN, GCNAX, ReGNN, and I-GCN, the

energy savings of RACE are improved by on average 14.8×, 12.9×, 11.5×, and 8.9×, respectively.
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Fig. 16. Off-chip memory traffic associated with different

types of vertices for different accelerators.

Fig. 17. Area breakdown of RACE.

Fig. 18. Energy saving of different solutions normalized to that of DGNNS-CPU.

Fig. 19. Sensitivity studies of RACE over FK : (a) sensitivity to the total size of on-chip SRAM; (b) sensitivity

to the memory bandwidth.

RACE achieves more energy savings than existing solutions due to much fewer redundant compu-

tations and off-chip memory transfers.

4.2.4 Sensitivity Studies. Figure 19(a) evaluates the sensitivity to the total size of the on-chip

SRAM for TM-GCN. When the buffer size increases, RACE ensures higher performance than the

other solutions, because of the higher utilization of on-chip SRAM. Figure 19(b) depicts the perfor-

mance of various solutions with different values of memory bandwidth for TM-GCN. The results

show that RACE outperforms the other solutions in all cases, because it fully exploits the memory

bandwidth. Figure 20(a) shows the performance of RACE with different replacement strategies

for the management of the IF_Buffer, i.e., LRU [19], DRRIP [18], P-OPT [6], and GRASP [12], on

TM-GCN. It shows that our topology-aware data caching scheme outperforms the other schemes

due to the fact that it can avoid the data thrashing of the input features that are most frequently
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Fig. 20. Sensitivity studies of RACE: (a) sensitivity to the replacement strategies; (b) sensitivity to the number

of IUs; (c) sensitivity to time granularity; (d) sensitivity to the number of MAC units.

accessed in the DGNN processing. Figure 20(b) describes the sensitivity to the number of IUs on

TM-GCN. It shows that RACE can obtain better performance as the number of IUs increases until

the the number of IUs reaches 8, because the memory bandwidth is saturated. Figure 20(c) evalu-

ates the sensitivity to time granularity and shows that RACE still outperforms the other solutions

in all cases. Figure 20(d) shows the performance of RACE with varying number of MAC units. As

the number of MAC units increases, RACE exhibits an increasing performance gain. However, for

sake of fairness and limited resource and memory bandwidth, we selected 4,096 MAC units as it is

similar to the choices made by other state-of-the-art works (e.g., AWB-GCN [14] and I-GCN [15]).

5 RELATED WORK

Incremental computation and Software DGNN Solutions. Incremental computation [40, 45]

is widely used. Kineograph [11] and KickStarter [47] use incremental computation for efficient dy-

namic graph processing, however, may yield inaccurate results under some circumstances. Graph-

Blot [31] and DZiG [30] are further proposed to trace the dependencies between intermediate

results for correctness. Although all these software systems can support incremental computa-

tion, they do not support neural network computation in DGNN. Meanwhile, some solutions,

e.g., DGNNS [8], are also proposed for efficient execution of DGNN through reducing the trans-

fer time of vertices’ adjacency matrix, and so on. Unfortunately, these solutions need to recom-

pute all graph data of each graph snapshot and thus suffer from serious redundant computation

and irregular memory access overhead. Note that many software temporal graph processing solu-

tions [41, 43, 60] have been proposed to efficiently support temporal graph processing. However,

these solutions also suffer from inter-snapshot redundant memory accesses for DGNN.

Hardware Dynamic Graph Processing Accelerators. Although many static graph process-

ing accelerators [17, 35] have been developed, they suffer from significant redundant computation
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and access overhead when processing the dynamic graph. To track these issues, some dynamic

graph processing accelerators have been recently proposed. GraSU [49] employs a differential data

management for graph updating, and Basak et al. [7] propose an input-aware software and hard-

ware co-design to accelerate graph updating. DREDGE [32] provides a hardware accelerator to

speedup the repartitioning of dynamic graphs. JetStream [39] is designed to use an event-driven

computation model to efficiently support the delta-accumulative incremental computation [57] of

dynamic graphs. TDGraph [59] further optimizes the incremental computation of dynamic graphs

via synchronizing the vertex state propagations. Mint [44] presents a novel accelerator architecture

and a programming model for mining temporal motifs efficiently. However, the GNN operations

of DGNN are non-linear function [22] and cannot be expressed as the delta-accumulative compu-

tation [57] and the computation pattern of temporal motifs [44]. Thus, these accelerators cannot

support the execution of the DGNN, although they can efficiently support the processing of the

dynamic graphs.

Hardware GNN Accelerators. Many GNN accelerators [5, 26, 50, 52, 54–56, 58, 61] have been

recently developed. HyGCN [51] proposes a window-based sliding and shrinking method to reduce

the redundant accesses and improve the locality of non-zero elements in the adjacency matrix. To

further reduce data movement, GCNAX [25] employs an adaptable and efficient dataflow to recon-

figure the loop order and loop fusion strategy of matrix multiplication to adapt to different GCN

accelerators configurations. To alleviate the data access irregularity of GCN, GCoD [53] proposes

a split and conquer GCN training strategy. For load balancing of GCN inference, AWB-GCN [14]

leverages three auto-tuning techniques to dynamically balance the workload for all processing el-

ements to boost the efficiency. To reduce redundant computations and memory accesses of GNN,

I-GCN [15] proposes an online graph restructuring algorithm, and ReGNN [9] proposes a dynamic

redundancy elimination algorithm and a dynamic clipping algorithm.

However, these hardware accelerators are inefficient in resolving the redundant computations

and irregular memory accesses for DGNN inference, because they also need to recompute all data

of each snapshot and suffer from significant inter-snapshot redundancy (i.e., the redundant com-

putation and accesses between successive snapshots) for DGNN.

6 CONCLUSION

This article proposes a redundancy-aware hardware accelerator RACE toward efficient DGNN in-

ference. Through correctly and incrementally processing multiple snapshots for DGNN, RACE en-

ables much smaller redundant computation and data access overhead. Experimental results show

that RACE obtains on average 1139× and 84.7× speedups with average 2242× and 234.2× energy

savings for DGNN inference over the start-of-the-art DGNN software systems running on the CPU

and GPU, respectively. Moreover, RACE obtains on average 13.1×, 11.7×, 10.4×, 7.9× speedup and

14.8×, 12.9×, 11.5×, 8.9× energy savings over the state-of-the-art GNN accelerators, i.e., AWB-GCN,

GCNAX, ReGNN, and I-GCN, respectively.
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