749 research outputs found

    William John Adie: the man behind the syndrome

    Get PDF
    William John Adie was an Australian neurologist in the early 20th century responsible for extensively describing the tonically dilated pupil associated with absent deep tendon reflexes – both features of a syndrome that now bears his name. In addition to other neurological syndromes, he was also significant in delineating narcolepsy through his clinical essays and case series. His ophthalmic and neurologic contributions have served the test of time and played an important role in the modern understanding of Adie syndrome and narcolepsy. This report reviews Adie's medical contributions, extensive descriptions of Adie syndrome, and provides a brief biographical account of his life

    Saturation of front propagation in a reaction-diffusion process describing plasma damage in porous low-k materials

    Get PDF
    We propose a three-component reaction-diffusion system yielding an asymptotic logarithmic time-dependence for a moving interface. This is naturally related to a Stefan-problem for which both one-sided Dirichlet-type and von Neumann-type boundary conditions are considered. We integrate the dependence of the interface motion on diffusion and reaction parameters and we observe a change from transport behavior and interface motion \sim t^1/2 to logarithmic behavior \sim ln t as a function of time. We apply our theoretical findings to the propagation of carbon depletion in porous dielectrics exposed to a low temperature plasma. This diffusion saturation is reached after about 1 minute in typical experimental situations of plasma damage in microelectronic fabrication. We predict the general dependencies on porosity and reaction rates.Comment: Accepted for publication in Phys. Rev.

    Scaling of viscous dynamics in simple liquids:theory, simulation and experiment

    Get PDF
    Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. Many liquids have been shown to obey power-law density scaling, according to which the relaxation time is a function of density to some power over temperature. We show that power-law density scaling breaks down for larger density variations than usually studied. This is demonstrated by simulations of the Kob-Andersen binary Lennard-Jones mixture and two molecular models, as well as by experimental results for two van der Waals liquids. A more general form of density scaling is derived, which is consistent with results for all the systems studied. An analytical expression for the scaling function for liquids of particles interacting via generalized Lennard-Jones potentials is derived and shown to agree very well with simulations. This effectively reduces the problem of understanding the viscous slowing down from being a quest for a function of two variables to a search for a single-variable function.Comment: 7 pages, 5 figure

    Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Get PDF
    BACKGROUND: The arachnoid granulations (AGs) are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF) to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. METHODS: Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144) and their expression was quantified using flow cytometry analysis. RESULTS: Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. CONCLUSION: To our knowledge, this is the first report of the in vitro culture of arachnoidal cells grown from human AG tissue. We demonstrated that these cells in vitro continue to express some of the cytoskeletal and junctional proteins characterized previously in human AG tissue, such as proteins involved in the formation of gap junctions, desmosomes, epithelial specific adherens junctions, as well as tight junctions. These junctional proteins in particular may be important in allowing these arachnoidal cells to regulate CSF outflow

    Regularized Maximum Likelihood Image Synthesis and Validation for ALMA Continuum Observations of Protoplanetary Disks

    Get PDF
    Regularized Maximum Likelihood (RML) techniques are a class of image synthesis methods that achieve better angular resolution and image fidelity than traditional methods like CLEAN for sub-mm interferometric observations. To identify best practices for RML imaging, we used the GPU-accelerated open source Python package MPoL, a machine learning-based RML approach, to explore the influence of common RML regularizers (maximum entropy, sparsity, total variation, and total squared variation) on images reconstructed from real and synthetic ALMA continuum observations of protoplanetary disks. We tested two different cross-validation (CV) procedures to characterize their performance and determine optimal prior strengths, and found that CV over a coarse grid of regularization strengths easily identifies a range of models with comparably strong predictive power. To evaluate the performance of RML techniques against a ground truth image, we used MPoL on a synthetic protoplanetary disk dataset and found that RML methods successfully resolve structures at fine spatial scales present in the original simulation. We used ALMA DSHARP observations of the protoplanetary disk around HD 143006 to compare the performance of MPoL and CLEAN, finding that RML imaging improved the spatial resolution of the image by up to a factor of 3 without sacrificing sensitivity. We provide general recommendations for building an RML workflow for image synthesis of ALMA protoplanetary disk observations, including effective use of CV. Using these techniques to improve the imaging resolution of protoplanetary disk observations will enable new science, including the detection of protoplanets embedded in disks.Comment: 27 pages, 12 figures, accepted for publication in PAS

    Room ventilation and the risk of airborne infection transmission in a tertiary hospital

    Get PDF
    Outdoor air ventilation is a key mechanism controlling the airborne spread of several diseases. However, ventilation guidelines for hospitals are not typically based on preventing infection transmission. Aim: We sought to assess the effectiveness of current ventilation rates on infection risks for influenza, tuberculosis (TB) and rhinovirus within three distinct rooms in a major tertiary hospital in Australia. Methods: The rooms targeted were a Lung Function Laboratory, negative pressure isolation room in the Emergency Department and an Outpatient Consultation Room. Air exchange measurements were performed in each by using CO2 decay, and the proportion of outdoor air supplied was determined by CO2 mass-balance at the air handling unit. Gammaitoni and Nucci's infection risk model, based on the traditional Wells-Riley model, was then employed to model scenarios typical of those experienced by patients. Results: Current outdoor air exchange rates in the Lung Function Laboratory and Isolation Room were appropriate, and infection risks for all modelled scenarios were <3.6%. Influenza risk for patients entering the OPD Room after an infectious patient departed ranged from 3.6 to 20.7% depending on the occupancy time of the susceptible and infectious patient. Conclusions: In the absence of definitive guidelines, air exchange measurements combined with modelling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation at preventing airborne transmission

    Variation in morpho‑physiological and metabolic responses to low nitrogen stress across the sorghum association panel

    Get PDF
    Background: Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited. Results: Here we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions. Conclusion: Our results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model
    • …
    corecore