12 research outputs found

    Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns

    Get PDF
    Orthogroup data file. Zipped folder containing fasta-formatted reads identified by ProteinOrtho, used for all downstream orthogroup determination and analysis, along with readme document and relevant project-specific scripts (also available online via Dryad: http://dx.doi.org/10.5061/dryad.rg22j ). (ZIP 12021 kb

    Myriopteris windhamii sp. nov., a New Name For Cheilanthes villosa (Pteridaceae)

    No full text
    Volume: 103Start Page: 112End Page: 11

    Data from: Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns

    No full text
    Background: Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns—an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. Results: We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. Conclusions: Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes

    Primary hemiepiphytism and gametophyte morphology in Elaphoglossum amygdalifolium (Dryopteridaceae)

    No full text
    Elaphoglossum amygdalifolium holds a critical phylogenetic position as sister to the remaining ca. 600 extant species of Elaphoglossum and may provide important insight into the evolution of epiphytism in this clade of ferns. Here, we present the first examination of growth habit and gametophyte morphology for this species. We show that the cordate to elongate-cordate gametophytes occur up to 0. 5 m above the ground on the base of tree trunks. Unlike the gametophytes of all other studied species of Elaphoglossum, rhizoids are absent along the thallus margin and the hairs present on the margin lack whitish waxy caps; both differences are pleisiomorphic for the genus. Sporelings of E. amygdalifolium produce a single long root that grows straight into the soil where it branches profusely. Mature sporophytes have long-creeping rhizomes that climb to heights of at least 3 m and produce two types of roots: feeding roots that reach the ground and clasping roots that anchor the sporophyte to its host plant. Our observations reveal that E. amygdalifolium is a primary hemiepiphyte, the first example of this growth habit to be documented in Elaphoglossum. Results of an ancestral state reconstruction of growth habit in bolbitidoid ferns show that both primary hemiepiphytism and holoepiphytism are equally likely to be the ancestral character state for Elaphoglossum. © 2011 The New York Botanical Garden

    Mobile Elements Shape Plastome Evolution in Ferns

    Get PDF
    Plastid genomes display remarkable organizational stability over evolutionary time. From green algae to angiosperms, most plastid genomes are largely collinear, with only a few cases of inversion, gene loss, or, in extremely rare cases, gene addition. These plastome insertions are mostly clade-specific and are typically of nuclear or mitochondrial origin. Here, we expand on these findings and present the first family-level survey of plastome evolution in ferns, revealing a novel suite of dynamic mobile elements. Comparative plastome analyses of the Pteridaceae expose several mobile open reading frames that vary in sequence length, insertion site, and configuration among sampled taxa. Even between close relatives, the presence and location of these elements is widely variable when viewed in a phylogenetic context. We characterize these elements and refer to them collectively as Mobile Open Reading Frames in Fern Organelles (MORFFO). We further note that the presence of MORFFO is not restricted to Pteridaceae, but is found across ferns and other plant clades. MORFFO elements are regularly associated with inversions, intergenic expansions, and changes to the inverted repeats. They likewise appear to be present in mitochondrial and nuclear genomes of ferns, indicating that they can move between genomic compartments with relative ease. The origins and functions of these mobile elements are unknown, but MORFFO appears to be a major driver of structural genome evolution in the plastomes of ferns, and possibly other groups of plants
    corecore