523 research outputs found

    PAC-Bayes Un-Expected Bernstein Inequality

    Get PDF
    We present a new PAC-Bayesian generalization bound. Standard bounds contain a Ln⋅KL⁡/n\sqrt{L_n \cdot \operatorname{KL}/n} complexity term which dominates unless LnL_n, the empirical error of the learning algorithm's randomized predictions, vanishes. We manage to replace LnL_n by a term which vanishes in many more situations, essentially whenever the employed learning algorithm is sufficiently stable on the dataset at hand. Our new bound consistently beats state-of-the-art bounds both on a toy example and on UCI datasets (with large enough nn). Theoretically, unlike existing bounds, our new bound can be expected to converge to 00 faster whenever a Bernstein/Tsybakov condition holds, thus connecting PAC-Bayesian generalization and excess risk bounds --- for the latter it has long been known that faster convergence can be obtained under Bernstein conditions. Our main technical tool is a new concentration inequality which is like Bernstein's but with X2X^2 taken outside its expectation

    Photo‐biocatalytic Cascades:Combining Chemical and Enzymatic Transformations Fueled by Light

    Get PDF
    In the field of green chemistry, light – an attractive natural agent – has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations

    EXACT2: the semantics of biomedical protocols

    Get PDF
    © 2014 Soldatova et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. Methods: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously ‘unseen’ (not used for the construction of EXACT2) protocols. Results: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. Conclusions: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.This work has been partially funded by the Brunel University BRIEF award and a grant from Occams Resources

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Diabetic retinopathy: current and future methods for early screening from a retinal hemodynamic and geometric approach

    Get PDF
    Diabetic retinopathy (DR) is a major disease and is the number one cause of blindness in the UK. In England alone, 4200 new cases appear every year and 1280 lead to blindness. DR is a result of diabetes mellitus, which affects the retina of the eye and specifically the vessel structure. Elevated levels of glucose cause a malfunction in the cell structure, which affects the vessel wall and, in severe conditions, leads to their breakage. Much research has been carried out on detecting the different stages of DR but not enough versatile research has been carried out on the detection of early DR before the appearance of any lesions. In this review, the authors approach the topic from the functional side of the human eye and how hemodynamic factors that are impaired by diabetes affect the vascular structur

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉp→e+e−\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉp→π+π−\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Reph, a Regulator of Eph Receptor Expression in the Drosophila melanogaster Optic Lobe

    Get PDF
    Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system
    • 

    corecore