529 research outputs found
Integrable atomtronic interferometry
High sensitivity quantum interferometry requires more than just access to
entangled states. It is achieved through deep understanding of quantum
correlations in a system. Integrable models offer the framework to develop this
understanding. We communicate the design of interferometric protocols for an
integrable model that describes the interaction of bosons in a four-site
configuration. Analytic formulae for the quantum dynamics of certain
observables are computed. These expose the system's functionality as both an
interferometric identifier, and producer, of NOON states. Being equivalent to a
controlled-phase gate acting on two hybrid qudits, this system also highlights
an equivalence between Heisenberg-limited interferometry and quantum
information. These results are expected to open new avenues for
integrability-enhanced atomtronic technologies.Comment: 6 pages, 4 figures, 1 tabl
Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments
Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects
(HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure
extensive air showers (EAS). The precise knowledge of the Fluorescence Light
Yield (FLY) is of paramount importance for the reconstruction of UHECR. The
MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment
has been designed to perform such FLY measurements. In this paper we will
present the results of FLY in the 290-440 nm wavelength range for dry air and
pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50
GeV. The experiment uses a 90Sr radioactive source for low energy measurement
and a CERN SPS electron beam for high energy. We find that the FLY is
proportional to the deposited energy (E_d) in the gas and we show that the air
fluorescence properties remain constant independently of the electron energy.
At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio
FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle
Physic
The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: IV. Cosmological Implications
In this paper we examine the cosmological constraints of the recent DIRBE and
FIRAS detection of the extragalactic background light between 125-5000 microns
on the metal and star formation histories of the universe.Comment: 38 pages and 9 figures. Accepted for publications in The
Astrophysical Journa
Free induction signal from biexcitons and bound excitons
A theory of the free induction signal from biexcitons and bound excitons is
presented. The simultaneous existence of the exciton continuum and a bound
state is shown to result in a new type of time dependence of the free
induction. The optically detected signal increases in time and oscillates with
increasing amplitude until damped by radiative or dephasing processes.
Radiative decay is anomalously fast and can result in strong picosecond pulses.
The expanding area of a coherent exciton polarization (inflating antenna),
produced by the exciting pulse, is the underlying physical mechanism. The
developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1
Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds
The physical basis for interpreting observations of nebular morphology around
massive stars in terms of the evolution of the central stars is reviewed, and
examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable
and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf
(Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A
full-resolution version of fig 4 is available in the version at
http://www.mpia-hd.mpg.de/theory/preprints.html#maclo
Experimental Limit to Interstellar 244Pu Abundance
Short-lived nuclides, now extinct in the solar system, are expected to be
present in the interstellar medium (ISM). Grains of ISM origin were recently
discovered in the inner solar system and at Earth orbit and may accrete onto
Earth after ablation in the atmosphere. A favorable matrix for detection of
such extraterrestrial material is presented by deep open-sea sediments with
very low sedimentation rates (0.8-3 mm/kyr). We report here on the measurement
of Pu isotopic abundances in a 1-kg deep-sea dry sediment collected in 1992 in
the North Pacific. Our measured value of (3+-3)x10^5 244Pu atoms in the
Pu-separated fraction of the sample shows no excess over the expected
stratospheric nuclear fallout content and under reasonable assumptions we
derive a limit of 2x10^-11 g-244Pu/g-ISM for the abundance of 244Pu in ISM.Comment: 10 p, 1 fig, LateX(AASTeX) Accepted for publication in ApJL, aug 2,
200
Recommended from our members
Combined transcriptomic-(1)H NMR metabonomic study reveals yhat monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP
Weak pairwise correlations imply strongly correlated network states in a neural population
Biological networks have so many possible states that exhaustive sampling is
impossible. Successful analysis thus depends on simplifying hypotheses, but
experiments on many systems hint that complicated, higher order interactions
among large groups of elements play an important role. In the vertebrate
retina, we show that weak correlations between pairs of neurons coexist with
strongly collective behavior in the responses of ten or more neurons.
Surprisingly, we find that this collective behavior is described quantitatively
by models that capture the observed pairwise correlations but assume no higher
order interactions. These maximum entropy models are equivalent to Ising
models, and predict that larger networks are completely dominated by
correlation effects. This suggests that the neural code has associative or
error-correcting properties, and we provide preliminary evidence for such
behavior. As a first test for the generality of these ideas, we show that
similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and
Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah
(http://cosyne.org
Multiple Deeply Divergent Denisovan Ancestries in Papuans
Genome sequences are known for two archaic
hominins—Neanderthals and Denisovans—which
interbred with anatomically modern humans as
they dispersed out of Africa. We identified high-confidence
archaic haplotypes in 161 new genomes
spanning 14 island groups in Island Southeast
Asia and New Guinea and found large stretches of
DNA that are inconsistent with a single introgressing
Denisovan origin. Instead, modern Papuans carry
hundreds of gene variants from two deeply divergent
Denisovan lineages that separated over 350
thousand years ago. Spatial and temporal structure
among these lineages suggest that introgression
from one of these Denisovan groups predominantly
took place east of the Wallace line and continued
until near the end of the Pleistocene. A third Denisovan
lineage occurs in modern East Asians. This
regional mosaic suggests considerable complexity
in archaic contact, with modern humans interbreeding
with multiple Denisovan groups that were
geographically isolated from each other over deep
evolutionary time
- …