10 research outputs found

    A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation.

    Get PDF
    International audienceAIMS: The loss of the inhibitory receptor CD31 on peripheral T lymphocytes is associated with the incidence of atherosclerotic complications such as abdominal aortic aneurysms (AAA) in patients and plaque thrombosis in mice. However, we have recently discovered that a small fragment of extracellular CD31 remains expressed on the surface of the apparently 'CD31-negative' T-cells and that it is possible to restore the CD31-mediated T-cell inhibition in vivo by using a synthetic CD31-derived peptide. Here, we wanted to evaluate the therapeutic potential of the peptide in an experimental model of accelerated atherosclerosis and AAA formation. METHODS AND RESULTS: The effect of the murine CD31-derived peptide (aa 551-574, 1.5 mg/kg/day, sc) was evaluated on the extent of atherosclerotic plaques and the incidence of AAA in 28-week-old apolipoprotein E knockout mice (male, n ≥ 8/group) submitted to chronic angiotensin II infusion. The therapeutic mechanisms of the peptide were assessed by evaluating its effect on immune cell functions in vivo and in vitro. The prevalence of angiotensin II-induced AAA correlated with the loss of extracellular CD31 on T-cells. CD31 peptide treatment reduced both aneurysm formation and plaque size (P < 0.05 vs. control). Protection was associated with reduced perivascular leucocyte infiltration and T-cell activation in vivo. Functional in vitro studies showed that the peptide is able to suppress both T-cell and macrophage activation. CONCLUSION: CD31 peptides could represent a new class of drugs intended to prevent the inflammatory cell processes, such as those underlying progression of atherosclerosis and development of AAA

    TCR stimulation drives cleavage and shedding of the ITIM receptor CD31.: CD31 cleavage and shedding from TCR-stimulated T-cells

    Get PDF
    International audienceCD31 is a transmembrane molecule endowed with T cell regulatory functions owing to the presence of 2 immunotyrosine-based inhibitory motifs. For reasons not understood, CD31 is lost by a portion of circulating T lymphocytes, which appear prone to uncontrolled activation. In this study, we show that extracellular T cell CD31 comprising Ig-like domains 1 to 5 is cleaved and shed from the surface of human T cells upon activation via their TCR. The shed CD31 can be specifically detected as a soluble, truncated protein in human plasma. CD31 shedding results in the loss of its inhibitory function because the necessary cis-homo-oligomerization of the molecule, triggered by the trans-homophilic engagement of the distal Ig-like domain 1, cannot be established by CD31(shed) cells. However, we show that a juxta-membrane extracellular sequence, comprising part of the domain 6, remains expressed at the surface of CD31(shed) T cells. We also show that the immunosuppressive CD31 peptide aa 551-574 is highly homophilic and possibly acts by homo-oligomerizing with the truncated CD31 remaining after its cleavage and shedding. This peptide is able to sustain phosphorylation of the CD31 ITIM(686) and of SHP2 and to inhibit TCR-induced T cell activation. Finally, systemic administration of the peptide in BALB/c mice efficiently suppresses Ag-induced T cell-mediated immune responses in vivo. We conclude that the loss of T cell regulation caused by CD31 shedding driven by TCR stimulation can be rescued by molecular tools able to engage the truncated juxta-membrane extracellular molecule that remains exposed at the surface of CD31(shed) cells

    Antiangiogenic treatment prevents adventitial constrictive remodeling in graft arteriosclerosis

    No full text
    BACKGROUND Lumen loss in graft arteriosclerosis is the consequence of the development of a thick neointima and constrictive arterial remodeling. The latter is due to adventitial chronic inflammation and excessive perivascular collagen deposition. We reasoned that blockade of the portal of entry of inflammatory effectors may constitute a strategy to prevent constrictive arterial remodeling. METHODS AND RESULTS We found that an anti-angiogenic therapy (ABT-510 nonapeptide), devoid of direct immunomodulatory properties, dramatically reduced adventitial angiogenesis by 66% (P\textless0.0001) in the rat aortic interposition model of graft arteriosclerosis. The associated decreased entry of inflammatory cells (44%; P\textless0.00001) resulted in drastic reduction of collagen deposition (57%; P\textless0.0001) thereby preventing subsequent adventitial constrictive remodeling and reduction of lumen surface area (5.26+/-0.74 vs. 8.58+/-2.48 microm2; Control vs. ABT-510-treated rats; P\textless0.0001). ABT-510 had no effect on the development of the neointima. CONCLUSION This work supports the idea that targeting angiogenesis may act synergistically with conventional immunosuppressive therapy in preventing graft arteriosclerosis, a crucial feature of chronic graft rejection
    corecore