17 research outputs found

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    A longitudinal study of patients with cirrhosis treated with L-ornithine L-aspartate, examined with magnetization transfer, diffusion-weighted imaging and magnetic resonance spectroscopy

    Get PDF
    The presence of overt hepatic encephalopathy (HE) is associated with structural, metabolic and functional changes in the brain discernible by use of a variety of magnetic resonance (MR) techniques. The changes in patients with minimal HE are less well documented. Twenty-two patients with well-compensated cirrhosis, seven of whom had minimal HE, were examined with cerebral 3 Tesla MR techniques, including T1- and T2-weighted, magnetization transfer and diffusion-weighted imaging and proton magnetic resonance spectroscopy sequences. Studies were repeated after a 4-week course of oral L-ornithine L-aspartate (LOLA). Results were compared with data obtained from 22 aged-matched healthy controls. There was no difference in mean total brain volume between patients and controls at baseline. Mean cerebral magnetization transfer ratios were significantly reduced in the globus pallidus and thalamus in the patients with cirrhosis irrespective of neuropsychiatric status; the mean ratio was significantly reduced in the frontal white matter in patients with minimal HE compared with healthy controls but not when compared with their unimpaired counterparts. There were no significant differences in either the median apparent diffusion coefficients or the mean fractional anisotropy, calculated from the diffusion-weighted imaging, or in the mean basal ganglia metabolite ratios between patients and controls. Psychometric performance improved in 50% of patients with minimal HE following LOLA, but no significant changes were observed in brain volumes, cerebral magnetization transfer ratios, the diffusion weighted imaging variables or the cerebral metabolite ratios. MR variables, as applied in this study, do not identify patients with minimal HE, nor do they reflect changes in psychometric performance following LOLA

    Specific heat of 2D interacting Majorana fermions from holography

    Get PDF
    Majorana fermions are a fascinating medium for discovering new phases of matter. However, the standard analytical tools are very limited in probing the non-perturbative aspects of interacting Majoranas in more than one dimensions. Here, we employ the holographic correspondence to determine the specific heat of a two-dimensional interacting gapless Majorana system. To perform our analysis we first describe the interactions in terms of a pseudo-scalar torsion field. We then allow fluctuations in the background curvature thus identifying our model with a (2 + 1)-dimensional Anti-de Sitter (AdS) geometry with torsion. By employing the AdS/CFT correspondence, we show that the interacting model is dual to a (1 + 1)-dimensional conformal field theory (CFT) with central charge that depends on the interaction coupling. This non-perturbative result enables us to determine the effect interactions have in the specific heat of the system at the zero temperature limit

    Magnetic Resonance Imaging:Principles and Techniques: Lessons for Clinicians

    No full text
    The development of magnetic resonance imaging (MRI) for use in medical investigation has provided a huge forward leap in the field of diagnosis, particularly with avoidance of exposure to potentially dangerous ionizing radiation. With decreasing costs and better availability, the use of MRI is becoming ever more pervasive throughout clinical practice. Understanding the principles underlying this imaging modality and its multiple applications can be used to appreciate the benefits and limitations of its use, further informing clinical decision-making. In this article, the principles of MRI are reviewed, with further discussion of specific clinical applications such as parallel, diffusion-weighted, and magnetization transfer imaging. MR spectroscopy is also considered, with an overview of key metabolites and how they may be interpreted. Finally, a brief view on how the use of MRI will change over the coming years is presented

    Magnetic Resonance Spectroscopy:Principles and Techniques: Lessons for Clinicians

    No full text
    Magnetic resonance spectroscopy (MRS) provides a non-invasive ‘window’ on biochemical processes within the body. Its use is no longer restricted to the field of research, with applications in clinical practice increasingly common. MRS can be conducted at high magnetic field strengths (typically 11–14 T) on body fluids, cell extracts and tissue samples, with new developments in whole-body magnetic resonance imaging (MRI) allowing clinical MRS at the end of a standard MRI examination, obtaining functional information in addition to anatomical information. We discuss the background physics the busy clinician needs to know before considering using the technique as an investigative tool. Some potential applications of hepatic and cerebral MRS in chronic liver disease are also discussed

    Modulation of neural activation following treatment of hepatic encephalopathy

    No full text
    OBJECTIVE: To measure changes in psychometric state, neural activation, brain volume (BV), and cerebral metabolite concentrations during treatment of minimal hepatic encephalopathy. METHODS: As proof of principle, 22 patients with well-compensated, biopsy-proven cirrhosis of differing etiology and previous minimal hepatic encephalopathy were treated with oral l-ornithine l-aspartate for 4 weeks. Baseline and 4-week clinical review, blood chemistry, and psychometric evaluation (Psychometric Hepatic Encephalopathy Score and Cognitive Drug Research Score) were performed. Whole-brain volumetric and functional MRI was conducted using a highly simplistic visuomotor task, together with proton magnetic resonance spectroscopy of the basal ganglia. Treatment-related changes in regional BV and neural activation change (blood oxygenation level dependent) were assessed. RESULTS: Although there was no change in clinical, biochemical state, basal ganglia magnetic resonance spectroscopy, or in regional BV, there were significant improvements in Cognitive Drug Research Score (+1.2, p = 0.003) and Psychometric Hepatic Encephalopathy Score (+1.5, p = 0.003) with treatment. This cognitive amelioration was accompanied by changes in blood oxygenation level–dependent activation in the posterior cingulate and ventral medial prefrontal cortex, 2 regions that form part of the brain's structural and metabolic core. In addition, there was evidence of greater visual cortex activation. CONCLUSIONS: These structurally interconnected regions all showed increased function after successful encephalopathy treatment. Because no regional change in BV was observed, this implies that mechanisms unrelated to astrocyte volume regulation were involved in the significant improvement in cognitive performance

    The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990–2016

    No full text
    corecore