602 research outputs found
Thermal satellite images and boundary layer structures in desert marginal areas
Version of RecordPublishe
A cross-sectional survey of cardiovascular health and lifestyle habits of hospital staff in the UK: Do we look after ourselves?
Background: A high prevalence of stress-related disorders is well known among healthcare professionals. We set out to assess the prevalence of cardiovascular risk factors and compliance with national dietary and physical activity recommendations in NHS staff in the UK with comparison between clinical and non-clinical staff, and national surveys. Design: A multi-centre cross-sectional study. Methods: A web-based questionnaire was developed to include anonymised data on demographics, job role, cardiovascular risk factors and diseases, dietary habits, physical activity and barriers towards healthy lifestyle. This was distributed to staff in four NHS hospitals via emails. Results: A total of 1158 staff completed the survey (response rate 13%) with equal distribution between the clinical and non-clinical groups. Most staff were aged 26–60 years and 79% were women. Half of the staff were either overweight or obese (51%) with no difference between the groups (P = 0.176), but there was a lower prevalence of cardiovascular risk factors compared to the general population. The survey revealed a low compliance (17%) with the recommended intake of five-a-day portions of fruit and vegetables, and that of moderate or vigorous physical activity (56%), with no difference between the clinical and non-clinical staff (P = 0.6). However, more clinical staff were exceeding the alcohol recommendations (P = 0.02). Lack of fitness facilities and managerial support, coupled with long working hours, were the main reported barriers to a healthy lifestyle. Conclusions: In this survey of UK NHS staff, half were found to be overweight or obese with a lower prevalence of cardiovascular risk factors compared to the general population. There was a low compliance with the five-a-day fruit and vegetables recommendation and physical activity guidelines, with no difference between the clinical and non-clinical staff
Equivariant Alexandrov Geometry and Orbifold Finiteness
Let a compact Lie group act isometrically on a non-collapsing sequence of
compact Alexandrov spaces with fixed dimension and uniform lower curvature and
upper diameter bounds. If the sequence of actions is equicontinuous and
converges in the equivariant Gromov--Hausdorff topology, then the limit space
is equivariantly homeomorphic to spaces in the tail of the sequence.
As a consequence, the class of Riemannian orbifolds of dimension defined
by a lower bound on the sectional curvature and the volume and an upper bound
on the diameter has only finitely many members up to orbifold homeomorphism.
Furthermore, any class of isospectral Riemannian orbifolds with a lower bound
on the sectional curvature is finite up to orbifold homeomorphism.Comment: 25 pages, in v2 citation for Theorem 2.13 was corrected, in this
version the material of arXiv:1401.0739 was incorporated. The combined
article has been published in the Journal of Geometric Analysi
Accretion Disks Around Black Holes: Twenty Five Years Later
We study the progress of the theory of accretion disks around black holes in
last twenty five years and explain why advective disks are the best bet in
explaining varied stationary and non-stationary observations from black hole
candidates. We show also that the recently proposed advection dominated flows
are incorrect.Comment: 30 Latex pages including figures. Kluwer Style files included.
Appearing in `Observational Evidence for Black Holes in the Universe', ed.
Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland
Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi
The recent invasion of the comb jelly Mnemiopsis leidyi into northern European waters is of major public and scientific concern. One of the key features making M. leidyi a successful invader is its high fecundity combined with fast growth rates. However, little is known about physiological limitations to its reproduction and consequent possible abiotic restrictions to its dispersal. To evaluate the invasion potential of M. leidyi into the brackish Baltic Sea we studied in situ egg production rates in different regions and at different salinities in the laboratory, representing the salinity gradient of the Baltic Sea. During October 2009 M. leidyi actively reproduced over large areas of the Baltic Sea. Egg production rates scaled with animal size but decreased significantly with decreasing salinity, both in the field (7–29) and in laboratory experiments (6–33). Temperature and zooplankton, i.e. food abundance, could not explain the observed differences. Reproduction rates at conditions representing the Kattegat, south western and central Baltic Sea, respectively, were 2.8 fold higher at the highest salinities (33 and 25) than at intermediate salinities (10 and 15) and 21 times higher compared from intermediate to the lowest salinity tested (6). Higher salinity areas such as the Kattegat, and to a lower extent the south western Baltic, seem to act as source regions for the M. leidyi population in the central Baltic Sea where a self-sustaining population, due to the low salinity, cannot be maintained
Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
A role for the tfs3 ICE-encoded type IV secretion system in pro-inflammatory signalling by the Helicobacter pylori Ser/Thr kinase, CtkA
Two distinct type IV secretion systems (T4SSs) can be identified in certain Helicobacter pylori strains, encoded on mobile genetic elements termed tfs3 and tfs4. Although their function remains unknown, both have been implicated in clinical outcomes of H. pylori infection. Here we provide evidence that the Tfs3 T4SS is required for activity of the pro-inflammatory Ser/Thr kinase protein, CtkA, in a gastric epithelial cell infection model. Previously, purified recombinant CtkA protein has been shown to upregulate NF-kappaB signalling and induce TNF-alpha and IL-8 cytokine secretion from cultured macrophages suggesting that it may potentiate the H. pylori-mediated inflammatory response. In this study, we show that CtkA expressed from its native host, H. pylori has a similar capacity for stimulation of a pro-inflammatory response from gastric epithelial cells. CtkA interaction was found to be dependent upon a complement of tfs3 T4SS genes, but independent of the T4SSs encoded by either tfs4 or the cag pathogenicity island. Moreover, the availability of CtkA for host cell interaction was shown to be conditional upon the carboxyl-terminus of CtkA, encoding a putative conserved secretion signal common to other variably encoded Tfs3 proteins. Collectively, our observations indicate a role for the Tfs3 T4SS in CtkA-mediated pro-inflammatory signalling by H. pylori and identify CtkA as a likely Tfs3 T4SS secretion substrate
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
- …