135 research outputs found

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Reef-building corals thrive within hot-acidified and deoxygenated waters

    Get PDF
    Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. In vitro experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24-35% across lagoon sites). Calcification rates for key species (Acropora formosa, Acropora pulchra, Coelastrea aspera and Porites lutea) for populations from the lagoon were equivalent to, or reduced by ca. 30-40% compared to those from the reef. Enhanced coral respiration, alongside high particulate organic content of the lagoon sediment, suggests acclimatisation to this trio of temperature, oxygen and pH changes through heterotrophic plasticity. This semi-enclosed lagoon therefore provides a novel system to understand coral acclimatisation to complex climatic scenarios and may serve as a reservoir of coral populations already resistant to extreme environmental conditions

    Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

    Get PDF
    As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification

    Coping with Commitment: Projected Thermal Stress on Coral Reefs under Different Future Scenarios

    Get PDF
    BACKGROUND: Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response. METHODOLOGY/PRINCIPAL FINDINGS: This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the "committed warming" for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p> or =0.2 year(-1)) thermal stress by 2080. An additional "societal" warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO(2) stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5 degrees C would delay the thermal stress forecast by 50-80 years. CONCLUSIONS/SIGNIFICANCE: The results suggest that adaptation -- via biological mechanisms, coral community shifts and/or management interventions -- could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO(2) concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal stress events

    Palaeoclimate inferred from Ξ΄18O and palaeobotanical indicators in freshwater tufa of Lake Γ„ntu SinijΓ€rv, Estonia

    Get PDF
    We investigated a 3.75-m-long lacustrine sediment record from Lake Γ„ntu SinijΓ€rv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (Ξ΄18O) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution Ξ΄18O data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Γ„ntu SinijΓ€rv sediments by abrupt appearance of diagnostic pollen (Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of Ξ΄18O (less than βˆ’12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in Ξ΄18O values, to βˆ’11.3 and βˆ’11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from βˆ’11.5 to βˆ’10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in Ξ΄18O (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in Ξ΄18O, reaching the most negative value (βˆ’12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP

    Regulation of Apoptotic Pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to Survive Thermal Stress and Bleaching

    Get PDF
    Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like) cloned in this study. In corals exposed to thermal stress (32 or 34Β°C), caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6–48 h) and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34Β°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32Β°C, and recovered back symbionts when placed at 24Β°C. These results point to a two-stage response in corals that withstand thermal stress: (i) the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii) acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival

    A Connection between Colony Biomass and Death in Caribbean Reef-Building Corals

    Get PDF
    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexicoβ‰₯Florida Keysβ‰₯Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels

    The Biology and Economics of Coral Growth

    Get PDF
    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organismsβ€”the zooxanthellate scleractinian coralsβ€”is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review paper provides a comprehensive overview of factors that can influence the growth of zooxanthellate scleractinian corals, with particular emphasis on interactions between these factors. Furthermore, the kinetic principles underlying coral growth are discussed. The reviewed information is put into an economic perspective by making an estimation of the costs of coral aquaculture

    Effects of Light, Food Availability and Temperature Stress on the Function of Photosystem II and Photosystem I of Coral Symbionts

    Get PDF
    Background: Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate.\ud \ud Methodology/Principal Findings: This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress.\ud \ud Conclusions/Significance: Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host

    Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery

    Get PDF
    Background: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance
    • …
    corecore