352 research outputs found

    THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE

    Get PDF
    Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research

    Kinetic modeling of tumor growth and dissemination in the craniospinal axis: implications for craniospinal irradiation

    Get PDF
    BACKGROUND: Medulloblastoma and other types of tumors that gain access to the cerebrospinal fluid can spread throughout the craniospinal axis. The purpose of this study was to devise a simple multi-compartment kinetic model using established tumor cell growth and treatment sensitivity parameters to model the complications of this spread as well as the impact of treatment with craniospinal radiotherapy. METHODS: A two-compartment mathematical model was constructed. Rate constants were derived from previously published work and the model used to predict outcomes for various clinical scenarios. RESULTS: The model is simple and with the use of known and estimated clinical parameters is consistent with known clinical outcomes. Treatment outcomes are critically dependent upon the duration of the treatment break and the radiosensitivity of the tumor. Cross-plot analyses serve as an estimate of likelihood of cure as a function of these and other factors. CONCLUSION: The model accurately describes known clinical outcomes for patients with medulloblastoma. It can help guide treatment decisions for radiation oncologists treating patients with this disease. Incorporation of other treatment modalities, such as chemotherapy, that enhance radiation sensitivity and/or reduce tumor burden, are predicted to significantly increase the probability of cure

    Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    Get PDF
    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd

    Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy

    Get PDF
    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n = 152) and 3, 311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P = 1.42 x 10(-12)),8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472;P = 3.41 x 10(-8)),and 2p22 at SOS1 (rs963731;P = 1.76 x 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22;rs1768208;P = 2.07 x 10(-7)) and MAPT H1c (17q21;rs242557;P = 7.91 x 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein)

    Modeling double strand break susceptibility to interrogate structural variation in cancer

    Get PDF
    Abstract Background Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). Results We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. Conclusions We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors

    Distinct contributions of extrastriate body area and temporoparietal junction in perceiving one's own and others' body.

    Get PDF
    The right temporoparietal cortex plays a critical role in body representation. Here, we applied repetitive transcranial magnetic stimulation (rTMS) over right extrastriate body area (EBA) and temporoparietal junction (TPJ) to investigate their causative roles in perceptual representations of one's own and others' body. Healthy women adjusted size-distorted pictures of their own body or of the body of another person according to how they perceived the body (subjective task) or how others perceived it (intersubjective task). In keeping with previous reports, at baseline, we found an overall underestimation of body size. Crucially, EBA-rTMS increased the underestimation bias when participants adjusted the images according to how others perceived their own or the other woman's body, suggesting a specific role of EBA in allocentric body representations. Conversely, TPJ-rTMS increased the underestimation bias when participants adjusted the body of another person, either a familiar other or a close friend, in both subjective and intersubjective tasks, suggesting an involvement of TPJ in representing others' bodies. These effects were body-specific, since no TMS-induced modulation was observed when participants judged a familiar object. The results suggest that right EBA and TPJ play active and complementary roles in the complex interaction between the perceptions of one's own and other people's body
    • …
    corecore