59 research outputs found

    Technology Contribution to Improve Autistic Children Life Quality

    Get PDF
    To review published literature on the use of technology and how it has improved autistic children life style. A systematic review of the English literature was performed using the PRISMA guideline. Papers indexed in WOS and Scopus databases were included, adjusted to a timeline between 2016 and 2020 and focused on mobile technology, interventions, improvement of social behavior and communication and autism, aimed to describe the most used mechanism to improve autistic life style. Thirty two (32) papers were included in the review. We obtained 14 papers on the Scopus database and 18 on the WOS database. The majority of studies evidenced the use of virtual reality, mobile devices, video modelling and robots as the most common applications for autism therapies. Technology has caused an improvement in autistic children life quality. The development of mobile applications, virtual reality applications and robots have showed a positive impact reflected in the performance of daily activities and a better understanding of how they feel, how to behave, how to express themselves and interact with others. Technology gives the opportunity to monitor children status; and offers adaptability, safety, and accuracy of the information

    Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: Complement component C1q and Prnp polymorphisms

    Get PDF
    The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in southcentral Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p \u3c 0.05. After controlling for Prnp, we found weak support for an elevated risk of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility

    In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

    Get PDF
    The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society

    2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: The data that support the findings of this study are available upon reasonable request from the authors.Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.National Science Foundation (NSF)NAS

    Robust decentralized control of a fully actuated robot hand

    No full text
    Conference of 15th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2015 ; Conference Date: 11 May 2015 Through 13 May 2015; Conference Code:117493International audienceThis work deals with the robust control of the CEA anthropomorphic hand. A control-oriented strategy for the mechatronic design of the 24-degree-of-freedom robot hand has been pursued. It has led to a minimization of the kinematic couplings between the different finger axes of the motor-to-joint transmissions on the one hand, and a minimization of the nonlinear configuration-based variations of the plant to be controlled on the other hand. Consequently, from the control point of view, that mechanical design puts forward interesting properties, that are particularly relevant when considering practical implementation of controllers for systems with a high number of inputs and outputs. The generalized diagonally dominance of the system simplifies stability conditions for decentralized control. Thus, a decentralized H∞ controller with both feedforward and feedback actions for all flexion/extension and abduction/adduction motions of one finger unit has been successfully embedded into one single DSP board within the hand. The experimental results show that our whole approach has guaranteed high levels of precision and robustness, which, in turn, helps to improve dexterous manipulation skills of robotic hands

    Polynomial Piece-Wise Stiffness in Cable-Based Transmissions for Robots: Modeling and Identification

    No full text
    International audienceThis paper deals with cable-based motor-to-joint transmissions of multi-link robots chain. Their effects on robots flexibility have to be taken into account for modeling and control design. More in details, slack cables do not provide any force during compression (unlike springs), may present an initial nonzero elongation (preload) and, depending on the material, could exhibit non-constant stiffness. Those features may lead to non-trivial piece-wise elastic torques in a mechanical transmission. In this context, we present a framework to generate a more general (piece-wise) elastic torque model which can be embedded in the classical flexible-joint robot model, coherently with the Lagrangian approach. Moreover, we propose a model based on polynomial stiffness, whose parameters can be identified with ordinary least-squares techniques. Experimental results conducted on a flexible transmission show the usage and the utility of this work

    Mechanical Flexibility and the Design of Versatile and Dexterous Grippers

    No full text
    International audienceIn mechatronics design, appropriate methods are necessary to meet specific demands required for versatile gripping and dexterous manipulation tasks. This chapter reviews the mechanical flexibility that arises from the different components of a robotic gripper (structure, transmission, actuation, contact surfaces, etc.) in order to use it to benefit the overall performance of the system. The study of the actuation design and mechanical transmissions between the actuators and the joints remains crucial. The chapter reports several useful elastic elements for the mechatronic design of robotic fingers dedicated to dextral manipulation. The mechanical deformation can be advantageously exploited to simplify or optimize some components of the kinematic chain and make the overall behavior of the system more reliable. Taking into account, from the early design stage of the robotic device, the mechanical flexibility will allow us to increase manipulation capability of the gripper
    corecore