39 research outputs found

    Component-wise Power Estimation of Electrical Devices Using Thermal Imaging

    Full text link
    This paper presents a novel method to estimate the power consumption of distinct active components on an electronic carrier board by using thermal imaging. The components and the board can be made of heterogeneous material such as plastic, coated microchips, and metal bonds or wires, where a special coating for high emissivity is not required. The thermal images are recorded when the components on the board are dissipating power. In order to enable reliable estimates, a segmentation of the thermal image must be available that can be obtained by manual labeling, object detection methods, or exploiting layout information. Evaluations show that with low-resolution consumer infrared cameras and dissipated powers larger than 300mW, mean estimation errors of 10% can be achieved.Comment: 10 pages, 8 figure

    Path Integration and Separation of Variables in Spaces of Constant Curvature in Two and Three Dimensions

    Full text link
    In this paper path integration in two- and three-dimensional spaces of constant curvature is discussed: i.e.\ the flat spaces \bbbr^2 and \bbbr^3, the two- and three-dimensional sphere and the two- and three dimensional pseudosphere. The Laplace operator in these spaces admits separation of variables in various coordinate systems. In all these coordinate systems the path integral formulation will be stated, however in most of them an explicit solution in terms of the spectral expansion can be given only on a formal level. What can be stated in all cases, are the propagator and the corresponding Green function, respectively, depending on the invariant distance which is a coordinate independent quantity. This property gives rise to numerous identities connecting the corresponding path integral representations and propagators in various coordinate systems with each other.Comment: 70 pages, AmSTeX, DESY 93 - 141 (mailer corrupted file, and truncated it

    Towards polarization-based excitation tailoring for extended Raman spectroscopy

    Get PDF
    Undoubtedly, Raman spectroscopy is one of the most elaborate spectroscopy tools in materials science, chemistry, medicine and optics. However, when it comes to the analysis of nanostructured specimens or individual sub-wavelength-sized systems, the access to Raman spectra resulting from different excitation schemes is usually very limited. For instance, the excitation with an electric field component oriented perpendicularly to the substrate plane is a difficult task. Conventionally, this can only be achieved by mechanically tilting the sample or by sophisticated sample preparation. Here, we propose a novel experimental method based on the utilization of polarization tailored light for Raman spectroscopy of individual nanostructures. As a proof of principle, we create three-dimensional electromagnetic field distributions at the nanoscale using tightly focused cylindrical vector beams impinging normally onto the specimen, hence keeping the traditional beam-path of commercial Raman systems. In order to demonstrate the convenience of this excitation scheme, we use a sub-wavelength diameter gallium-nitride nanostructure as a test platform and show experimentally that its Raman spectra depend sensitively on its location relative to the focal vector field. The observed Raman spectra can be attributed to the interaction with transverse and pure longitudinal electric field components. This novel technique may pave the way towards a characterization of Raman active nanosystems, granting direct access to growth-related parameters such as strain or defects in the material by using the full information of all Raman modes

    Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma models

    Full text link
    We present a detailed study of quantized noncompact, nonlinear SO(1,N) sigma-models in arbitrary space-time dimensions D \geq 2, with the focus on issues of spontaneous symmetry breaking of boost and rotation elements of the symmetry group. The models are defined on a lattice both in terms of a transfer matrix and by an appropriately gauge-fixed Euclidean functional integral. The main results in all dimensions \geq 2 are: (i) On a finite lattice the systems have infinitely many nonnormalizable ground states transforming irreducibly under a nontrivial representation of SO(1,N); (ii) the SO(1,N) symmetry is spontaneously broken. For D =2 this shows that the systems evade the Mermin-Wagner theorem. In this case in addition: (iii) Ward identities for the Noether currents are derived to verify numerically the absence of explicit symmetry breaking; (iv) numerical results are presented for the two-point functions of the spin field and the Noether current as well as a new order parameter; (v) in a large N saddle-point analysis the dynamically generated squared mass is found to be negative and of order 1/(V \ln V) in the volume, the 0-component of the spin field diverges as \sqrt{\ln V}, while SO(1,N) invariant quantities remain finite.Comment: 60 pages, 12 Figures, AMS-Latex; v2: results on vacuum orbit and spontaneous symmetry breaking extended to all dimension

    Exact propagators for SUSY partners

    Full text link
    Pairs of SUSY partner Hamiltonians are studied which are interrelated by usual (linear) or polynomial supersymmetry. Assuming the model of one of the Hamiltonians as exactly solvable with known propagator, expressions for propagators of partner models are derived. The corresponding general results are applied to "a particle in a box", the Harmonic oscillator and a free particle (i.e. to transparent potentials).Comment: 31 page

    High-Throughput Analysis of Calcium Signalling Kinetics in Astrocytes Stimulated with Different Neurotransmitters

    Get PDF
    Astrocytes express a wide range of receptors for neurotransmitters and hormones that are coupled to increases in intracellular Ca2+ concentration, enabling them to detect activity in both neuronal and vascular networks. There is increasing evidence that astrocytes are able to discriminate between different Ca2+-linked stimuli, as the efficiency of some Ca2+ dependent processes – notably release of gliotransmitters – depends on the stimulus that initiates the Ca2+ signal. The spatiotemporal complexity of Ca2+ signals is substantial, and we here tested the hypothesis that variation in the kinetics of Ca2+ responses could offer a means of selectively engaging downstream targets, if agonists exhibited a “signature shape” in evoked Ca2+ response. To test this, astrocytes were exposed to three different receptor agonists (ATP, glutamate and histamine) and the resultant Ca2+ signals were analysed for systematic differences in kinetics that depended on the initiating stimulus. We found substantial heterogeneity between cells in the time course of Ca2+ responses, but the variation did not correlate with the type or concentration of the stimulus. Using a simple metric to quantify the extent of difference between populations, it was found that the variation between agonists was insufficient to allow signal discrimination. We conclude that the time course of global intracellular Ca2+ signals does not offer the cells a means for distinguishing between different neurotransmitters

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Functions of ADAM10 in human melanoma cells

    No full text
    corecore