20 research outputs found

    Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

    Get PDF
    The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ˜286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm-1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component SĂ©rsic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/

    Effect of galaxy mergers on star formation rates

    Get PDF
    Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time. However, the effect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers showing reduced, enhanced and highly enhanced star formation. We aim to determine the effect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling over 200\,000, over a large redshift range, 0.0 to 4.0. We train and use convolutional neural networks to create binary merger identifications (merger or non-merger) in the SDSS, KiDS and CANDELS imaging surveys. We then compare the galaxy main sequence subtracted SFR of the merging and non-merging galaxies to determine what effect, if any, a galaxy merger has on SFR. We find that the SFR of merging galaxies are not significantly different from the SFR of non-merging systems. The changes in the average SFR seen in the star forming population when a galaxy is merging are small, of the order of a factor of 1.2. However, the higher the SFR above the galaxy main sequence, the higher the fraction of galaxy mergers. Galaxy mergers have little effect on the SFR of the majority of merging galaxies compared to the non-merging galaxies. The typical change in SFR is less than 0.1~dex in either direction. Larger changes in SFR can be seen but are less common. The increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce starbursts

    Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short timescales and be directly related to the galaxy-galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different timescales for pair galaxies, targeting numerous star-formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries is consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-time duration SFR indicators (e.g. H-alpha), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs

    Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short timescales and be directly related to the galaxy-galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different timescales for pair galaxies, targeting numerous star-formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries is consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-time duration SFR indicators (e.g. H-alpha), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs

    GAMA/H-ATLAS: Common star-formation rate indicators and their dependence on galaxy physical parameters

    Get PDF
    We compare common star-formation rate (SFR) indicators in the local Universe in the GAMA equatorial fields (around 160 sq. deg.), using ultraviolet (UV) photometry from GALEX, far-infrared (FIR) and sub-millimetre (sub-mm) photometry from H-ATLAS, and Halpha spectroscopy from the GAMA survey. With a high-quality sample of 745 galaxies (median redshift 0.08), we consider three SFR tracers: UV luminosity corrected for dust attenuation using the UV spectral slope beta (SFRUV,corr), Halpha line luminosity corrected for dust using the Balmer decrement (BD) (SFRHalpha,corr), and the combination of UV and IR emission (SFRUV+IR). We demonstrate that SFRUV,corr can be reconciled with the other two tracers after applying attenuation corrections by calibrating IRX (i.e. the IR to UV luminosity ratio) and attenuation in the Halpha (derived from BD) against beta. However, beta on its own is very unlikely to be a reliable attenuation indicator. We find that attenuation correction factors depend on parameters such as stellar mass, z and dust temperature (Tdust), but not on Halpha equivalent width (EW) or Sersic index. Due to the large scatter in the IRX vs beta correlation, when compared to SFRUV+IR, the beta-corrected SFRUV,corr exhibits systematic deviations as a function of IRX, BD and Tdust

    Galaxy and mass assembly: the G02 field, Herschel–ATLAS target selection and data release 3

    Get PDF
    We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multiwavelength photometric survey in three equatorial regions each of 60.0 deg2 (G09, G12, and G15), and two southern regions of 55.7 deg2 (G02) and 50.6 deg2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS (Herschel – Astrophysical Terahertz Large Area Survey) sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154 809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5 per cent redshift complete to r < 19.8 mag over an area of 19.5 deg2, with 20 086 galaxy redshifts, that overlaps substantially with the XXL survey (X-ray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5 per cent), and spectra for about 75 per cent of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to HATLAS submillimetre sources, to 0.8 mag deeper (r < 20.6 mag) than the GAMA main survey. There are 25 814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/)

    Galaxy And Mass Assembly (GAMA): the G02 field, Herschel-ATLAS target selection and Data Release 3

    Get PDF
    We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multi-wavelength photometric survey in three equatorial regions each of 60.0 deg^2 (G09, G12, G15), and two southern regions of 55.7 deg^2 (G02) and 50.6 deg^2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5% redshift complete to r<19.8 over an area of 19.5 deg^2, with 20086 galaxy redshifts, that overlaps substantially with the XXL survey (X-ray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5%), and spectra for about 75% of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to H-ATLAS sub-mm sources, to 0.8 mag deeper (r<20.6) than the GAMA main survey. There are 25814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/)

    H-ATLAS/GAMA: The nature and characteristics of optically red galaxies detected at submillimetre wavelengths

    Get PDF
    We combine Herschel/SPIRE sub-millimeter (submm) observations with existing multi-wavelength data to investigate the characteristics of low redshift, optically red galaxies detected in submm bands. We select a sample of galaxies in the redshift range 0.01≀\leqz≀\leq0.2, having >5σ\sigma detections in the SPIRE 250 micron submm waveband. Sources are then divided into two sub-samples of redred and blueblue galaxies, based on their UV-optical colours. Galaxies in the redred sample account for ≈\approx4.2 per cent of the total number of sources with stellar masses M∗≳_{*}\gtrsim1010^{10} Solar-mass. Following visual classification of the redred galaxies, we find that ≳\gtrsim30 per cent of them are early-type galaxies and ≳\gtrsim40 per cent are spirals. The colour of the redred-spiral galaxies could be the result of their highly inclined orientation and/or a strong contribution of the old stellar population. It is found that irrespective of their morphological types, redred and blueblue sources occupy environments with more or less similar densities (i.e., the ÎŁ5\Sigma_5 parameter). From the analysis of the spectral energy distributions (SEDs) of galaxies in our samples based on MAGPHYS, we find that galaxies in the redred sample (of any morphological type) have dust masses similar to those in the blueblue sample (i.e. normal spiral/star-forming systems). However, in comparison to the redred-spirals and in particular blueblue systems, redred-ellipticals have lower mean dust-to-stellar mass ratios. Besides galaxies in the redred-elliptical sample have much lower mean star-formation/specific-star-formation rates in contrast to their counterparts in the blueblue sample. Our results support a scenario where dust in early-type systems is likely to be of an external origin

    Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

    Get PDF
    The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low-redshift galaxies. Covering an area of ~286 deg^2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238,000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm - 1 m. Here we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component S\'ersic fits, stellar masses, Hα\alpha-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72,225 objects in total). The database serving these data is available at http://www.gama-survey.org/
    corecore