13,417 research outputs found
Power law tails of time correlations in a mesoscopic fluid model
In a quenched mesoscopic fluid, modelling transport processes at high
densities, we perform computer simulations of the single particle energy
autocorrelation function C_e(t), which is essentially a return probability.
This is done to test the predictions for power law tails, obtained from mode
coupling theory. We study both off and on-lattice systems in one- and
two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent
agreement with the results of computer simulations. We also account for finite
size effects, such that smaller systems are fully covered by the present theory
as well.Comment: 11 pages, 12 figure
Magneto-resistance in a lithography defined single constrained domain wall spin valve
We have measured domain wall magnetoresistance in a single lithographically constrained domain wall. An H-shaped Ni nano-bridge was fabricated by e-beam lithography with the two sides being single magnetic do- mains showing independent magnetic switching. The connection between the sides constraining the domain wall when the sides line up anti-parallel. The magneto-resistance curve clearly identifies the magnetic con- figurations that are expected from a spin valve-like structure. The value of the magneto-resistance at room temperature is around 0.1% or 0.4 Â. This value is shown to be in agreement with a theoretical formulation based on spin accumulation. Micromagnetic simulations show it is possible to reduce the size of the domain wall further by shortening the length of the bridge
Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices
Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM
Community Schools Unfolded: A review of the literature.
Community schools are quickly increasing in number, but there is no evidence whether they are more effective than traditional schools. No study has empirically compared community schools to other schools. This study reviews the literature on the effectiveness of community schools. We focus on their three main components: cooperation with external organizations, parental involvement, and extracurricular activities. This review indicates that involving external organizations seems valuable in terms of social cohesion in neighborhoods. Parental involvement is particularly important for the educational development of lower socio-economic status families. Extracurricular activities positively relate to students? development in academic and social terms.
Stability of the Higgs mass in theories with extra dimensions
We analyze the ultraviolet stability of the Higgs mass in recently proposed
Kaluza-Klein models compactified on S_1/Z_2 or S_1/(Z_2\times Z_2'), both at
the field theory and string theory level. Fayet-Iliopoulos terms of U(1)
hypercharge are shown to be of vital importance for this discussion. Models
with a single Higgs doublet seem to be generically affected by quadratic
divergences.Comment: Contribution to the Proceedings of Durham IPPP meeting May 2001.(12
pages, LaTeX
Momentum of an electromagnetic wave in dielectric media
Almost a hundred years ago, two different expressions were proposed for the
energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's
tensor predicted an increase in the linear momentum of the wave on entering a
dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical
arguments were advanced in favour of both sides, and experiments proved
incapable of distinguishing between the two. Yet more forms were proposed, each
with their advocates who considered the form that they were proposing to be the
one true tensor. This paper reviews the debate and its eventual conclusion:
that no electromagnetic wave energy--momentum tensor is complete on its own.
When the appropriate accompanying energy--momentum tensor for the material
medium is also considered, experimental predictions of all the various proposed
tensors will always be the same, and the preferred form is therefore
effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0
from Eq.(44
Multiple time-scale approach for a system of Brownian particles in a non-uniform temperature field
The Smoluchowsky equation for a system of interacting Brownian particles in a
temperature gradient is derived from the Kramers equation by means of a
multiple time-scale method. The interparticle interactions are assumed to be
represented by a mean-field description. We present numerical results that
compare well with the theoretical prediction together with an extensive
discussion on the prescription of the Langevin equation in overdamped systems.Comment: 8 pages, 2 figure
Interrelation of work function and surface stability: the case of BaAl4
The relationship between the work function (Phi) and the surface stability of
compounds is, to our knowledge, unknown, but very important for applications
such as organic light-emitting diodes. This relation is studied using
first-principles calculations on various surfaces of BaAl4. The most stable
surface [Ba terminated (001)] has the lowest Phi (1.95 eV), which is lower than
that of any elemental metal including Ba. Adding barium to this surface neither
increases its stability nor lowers its work function. BaAl4 is also strongly
bound. These results run counter to the common perception that stability and a
low Phi are incompatible. Furthermore, a large anisotropy and a stable
low-work-function surface are predicted for intermetallic compounds with polar
surfaces.Comment: 4 pages, 5 figures, to be published in Chem. Ma
Spin-orbit induced mixed-spin ground state in NiO perovskites probed by XAS: new insight into the metal to insulator transition
We report on a Ni L edges x-ray absorption spectroscopy (XAS) study
in NiO perovskites. These compounds exhibit a metal to insulator ()
transition as temperature decreases. The L edge presents a clear
splitting in the insulating state, associated to a less hybridized ground
state. Using charge transfer multiplet calculations, we establish the
importance of the crystal field and 3d spin-orbit coupling to create a
mixed-spin ground state. We explain the transition in NiO
perovskites in terms of modifications in the Ni crystal field splitting
that induces a spin transition from an essentially low-spin (LS) to a
mixed-spin state.Comment: 4 pages, 4 figures, accepted as PRB - Rapid Comm. Dez. 200
- …