659 research outputs found

    [Introduction to] Black Lives and Bathrooms: Racial and Gendered Reactions to Minority Rights Movements.

    Get PDF
    Black Lives and Bathrooms: Racial and Gendered Reactions to Minority Rights Movements examines how people respond to minority movements in ways that maintain existing patterns of racial and gender inequality. By studying the Black Lives Matter and Transgender Bathroom Access movement efforts, J.E. Sumerau and Eric Anthony Grollman analyze how cisgender white people define minority movements in relation to their existing notions of United States social norms; react to minority movements utilizing racial, classed, gendered, and sexual stereotypes that reinforce racism, sexism, and cissexism in society; and propose ways that racial and gender minorities could gain conditional acceptance by behaving in ways cisgender white people find more comfortable and normal. Throughout this work, Sumerau and Grollman note how assumptions about whiteness and cisnormativity are spread as cisgender white people respond to racial and gender movements seeking social change.https://scholarship.richmond.edu/bookshelf/1393/thumbnail.jp

    Is aristolochic acid nephropathy a widespread problem in developing countries? A case study of Aristolochia indica L. in Bangladesh using an ethnobotanical - phytochemical approach

    Get PDF
    Ethnopharmacological relevance: Species of Aristolochia are associated with aristolochic acid nephropathy (AAN), a renal interstitial fibrosis and upper urinary tract cancer (UUC). Aristolochic acid nephropathy has been reported in ten countries but its true incidence is unknown and most likely underestimated. By combining an ethnobotanical and phytochemical approach we provide evidence for the risk of AAN occurring in Bangladesh. More specifically, we assess the intra-specific variation of aristolochic acid analogues in medicinally used A. indica samples from Bangladesh. Materials and Methods: Ethnobotanical information was collected from 16 kavirajes (traditional healers) in different study locations in Bangladesh. Plant samples were obtained from native habitats, botanical gardens, herbal markets and pharmaceutical companies. The samples were extracted using 70% methanol and were analysed using LC-DAD-MS and 1H-NMR. Results: Roots as well as leaves are commonly used for symptoms such as snake bites and sexual problems. Among the informants knowledge about toxicity or side effects is very limited and A. indica is often administered in very high doses. Replacement of A. indica with other medicinal plants such as Rauvolfia serpentina (L.) Benth. ex Kurz was common. A. indica samples contained a variety of aristolochic acid analogues such as aristolochic acid I, aristolochic acid II, cepharadione A and related compounds. Conclusions: AAN cases are likely to occur in Bangladesh and more awareness needs to be raised about the health risks associated with the use of A. indica and other species of Aristolochia as herbal medicines

    Aristolochic acid exposure in Romania and implications for renal cell carcinoma

    Get PDF
    Background: Aristolochic acid (AA) is a nephrotoxicant associated with AA nephropathy (AAN) and upper urothelial tract cancer (UUTC). Whole-genome sequences of 14 Romanian cases of renal cell carcinoma (RCC) recently exhibited mutational signatures consistent with AA exposure, although RCC had not been previously linked with AAN and AA exposure was previously reported only in localised rural areas. Methods: We performed mass spectrometric measurements of the aristolactam (AL) DNA adduct 7-(deoxyadenosin-N6-yl) aristolactam I (dA-AL-I) in nontumour renal tissues of the 14 Romanian RCC cases and 15 cases from 3 other countries. Results: We detected dA-AL-I in the 14 Romanian cases at levels ranging from 0.7 to 27 adducts per 108 DNA bases, in line with levels reported in Asian and Balkan populations exposed through herbal remedies or food contamination. The 15 cases from other countries were negative. Interpretation: Although the source of exposure is uncertain and likely different in AAN regions than elsewhere, our results demonstrate that AA exposure in Romania exists outside localised AAN regions and provide further evidence implicating AA in RCC

    Pediatric interventional radiography equipment: safety considerations

    Get PDF
    This paper discusses pediatric image quality and radiation dose considerations in state-of-the-art fluoroscopic imaging equipment. Although most fluoroscopes are capable of automatically providing good image quality on infants, toddlers, and small children, excessive radiation dose levels can result from design deficiencies of the imaging device or inappropriate configuration of the equipment’s capabilities when imaging small body parts. Important design features and setup choices at installation and during the clinical use of the imaging device can improve image quality and reduce radiation exposure levels in pediatric patients. Pediatric radiologists and cardiologists, with the help of medical physicists, need to understand the issues involved in creating good image quality at reasonable pediatric patient doses. The control of radiographic technique factors by the generator of the imaging device must provide a large dynamic range of mAs values per exposure pulse during both fluoroscopy and image recording as a function of patient girth, which is the thickness of the patient in the posterior–anterior projection at the umbilicus (less than 10 cm to greater than 30 cm). The range of pulse widths must be limited to less than 10 ms in children to properly freeze patient motion. Variable rate pulsed fluoroscopy can be leveraged to reduce radiation dose to the patient and improve image quality. Three focal spots with nominal sizes of 0.3 mm to 1 mm are necessary on the pediatric unit. A second, lateral imaging plane might be necessary because of the child’s limited tolerance of contrast medium. Spectral and spatial beam shaping can improve image quality while reducing the radiation dose. Finally, the level of entrance exposure to the image receptor of the fluoroscope as a function of operator choices, of added filter thickness, of selected pulse rate, of the selected field-of-view and of the patient girth all must be addressed at installation

    Structure of the uncomplexed DNA repair enzyme endonuclease VIII indicates significant interdomain flexibility

    Get PDF
    Escherichia coli endonuclease VIII (Nei) excises oxidized pyrimidines from DNA. It shares significant sequence homology and similar mechanism with Fpg, a bacterial 8-oxoguanine glycosylase. The structure of a covalent Nei–DNA complex has been recently determined, revealing critical amino acid residues which are important for DNA binding and catalysis. Several Fpg structures have also been reported; however, analysis of structural dynamics of Fpg/Nei family proteins has been hindered by the lack of structures of uncomplexed and DNA-bound enzymes from the same source. We report a 2.8 Å resolution structure of free wild-type Nei and two structures of its inactive mutants, Nei-E2A (2.3 Å) and Nei-R252A (2.05 Å). All three structures are virtually identical, demonstrating that the mutations did not affect the overall conformation of the protein in its free state. The structures show a significant conformational change compared with the Nei structure in its complex with DNA, reflecting a ∼50° rotation of the two main domains of the enzyme. Such interdomain flexibility has not been reported previously for any DNA glycosylase and may present the first evidence for a global DNA-induced conformational change in this class of enzymes. Several local but functionally relevant structural changes are also evident in other parts of the enzyme

    Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations

    Get PDF
    The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26±32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product

    The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein

    Get PDF
    In mammalian cells, MCTs (monocarboxylate transporters) require association with an ancillary protein to enable plasma membrane expression of the active transporter. Basigin is the preferred binding partner for MCT1, MCT3 and MCT4, and embigin for MCT2. In rat and rabbit erythrocytes, MCT1 is associated with embigin and basigin respectively, but its sensitivity to inhibition by AR-C155858 was found to be identical. Using RT (reverse transcription)–PCR, we have shown that Xenopus laevis oocytes contain endogenous basigin, but not embigin. Co-expression of exogenous embigin was without effect on either the expression of MCT1 or its inhibition by AR-C155858. In contrast, expression of active MCT2 at the plasma membrane of oocytes was significantly enhanced by co-expression of exogenous embigin. This additional transport activity was insensitive to inhibition by AR-C155858 unlike that by MCT2 expressed with endogenous basigin that was potently inhibited by AR-C155858. Chimaeras and C-terminal truncations of MCT1 and MCT2 were also expressed in oocytes in the presence and absence of exogenous embigin. L-Lactate Km values for these constructs were determined and revealed that the TM (transmembrane) domains of an MCT, most probably TM7–TM12, but not the C-terminus, are the major determinants of L-lactate affinity, whereas the associated ancillary protein has little or no effect. Inhibitor titrations of lactate transport by these constructs indicated that embigin modulates MCT2 sensitivity to AR-C155858 through interactions with both the intracellular C-terminus and TMs 3 and 6 of MCT2. The C-terminus of MCT2 was found to be essential for its expression with endogenous basigin

    AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10

    Get PDF
    In the present study we characterize the properties of the potent MCT1 (monocarboxylate transporter 1) inhibitor AR-C155858. Inhibitor titrations of L-lactate transport by MCT1 in rat erythrocytes were used to determine the Ki value and number of AR-C155858-binding sites (Et) on MCT1 and the turnover number of the transporter (kcat). Derived values were 2.3±1.4 nM, 1.29±0.09 nmol per ml of packed cells and 12.2±1.1 s−1 respectively. When expressed in Xenopus laevis oocytes, MCT1 and MCT2 were potently inhibited by AR-C155858, whereas MCT4 was not. Inhibition of MCT1 was shown to be time-dependent, and the compound was also active when microinjected, suggesting that AR-C155858 probably enters the cell before binding to an intracellular site on MCT1. Measurement of the inhibitor sensitivity of several chimaeric transporters combining different domains of MCT1 and MCT4 revealed that the binding site for AR-C155858 is contained within the C-terminal half of MCT1, and involves TM (transmembrane) domains 7–10. This is consistent with previous data identifying Phe360 (in TM10) and Asp302 plus Arg306 (TM8) as key residues in substrate binding and translocation by MCT1. Measurement of the Km values of the chimaeras for L-lactate and pyruvate demonstrate that both the C- and N-terminal halves of the molecule influence transport kinetics consistent with our proposed molecular model of MCT1 and its translocation mechanism that requires Lys38 in TM1 in addition to Asp302 and Arg306 in TM8 [Wilson, Meredith, Bunnun, Sessions and Halestrap (2009) J. Biol. Chem. 284, 20011–20021]

    A flexible loop in yeast ribosomal protein L11 coordinates P-site tRNA binding

    Get PDF
    High-resolution structures reveal that yeast ribosomal protein L11 and its bacterial/archael homologs called L5 contain a highly conserved, basically charged internal loop that interacts with the peptidyl-transfer RNA (tRNA) T-loop. We call this the L11 ‘P-site loop’. Chemical protection of wild-type ribosome shows that that the P-site loop is inherently flexible, i.e. it is extended into the ribosomal P-site when this is unoccupied by tRNA, while it is retracted into the terminal loop of 25S rRNA Helix 84 when the P-site is occupied. To further analyze the function of this structure, a series of mutants within the P-site loop were created and analyzed. A mutant that favors interaction of the P-site loop with the terminal loop of Helix 84 promoted increased affinity for peptidyl-tRNA, while another that favors its extension into the ribosomal P-site had the opposite effect. The two mutants also had opposing effects on binding of aa-tRNA to the ribosomal A-site, and downstream functional effects were observed on translational fidelity, drug resistance/hypersensitivity, virus maintenance and overall cell growth. These analyses suggest that the L11 P-site loop normally helps to optimize ribosome function by monitoring the occupancy status of the ribosomal P-site
    corecore