58 research outputs found
The long lives of primates and the ‘invariant rate of ageing’ hypothesis
Is it possible to slow the rate of ageing, or do biological constraints limit its plasticity? We test the ‘invariant rate of ageing’ hypothesis, which posits that the rate of ageing is relatively fixed within species, with a collection of 39 human and nonhuman primate datasets across seven genera. We first recapitulate, in nonhuman primates, the highly regular relationship between life expectancy and lifespan equality seen in humans. We next demonstrate that variation in the rate of ageing within genera is orders of magnitude smaller than variation in pre-adult and age-independent mortality. Finally, we demonstrate that changes in the rate of ageing, but not other mortality parameters, produce striking, species-atypical changes in mortality patterns. Our results support the invariant rate of ageing hypothesis, implying biological constraints on how much the human rate of ageing can be slowed
The long lives of primates and the ‘invariant rate of ageing’ hypothesis
This work was supported by NIA P01AG031719 to J.W.V. and S.C.A., with additional support provided by the Max Planck Institute of Demographic Research and the Duke University Population Research Institute.Is it possible to slow the rate of ageing, or do biological constraints limit its plasticity? We test the ‘invariant rate of ageing’ hypothesis, which posits that the rate of ageing is relatively fixed within species, with a collection of 39 human and nonhuman primate datasets across seven genera. We first recapitulate, in nonhuman primates, the highly regular relationship between life expectancy and lifespan equality seen in humans. We next demonstrate that variation in the rate of ageing within genera is orders of magnitude smaller than variation in pre-adult and age-independent mortality. Finally, we demonstrate that changes in the rate of ageing, but not other mortality parameters, produce striking, species-atypical changes in mortality patterns. Our results support the invariant rate of ageing hypothesis, implying biological constraints on how much the human rate of ageing can be slowed.Publisher PDFPeer reviewe
Consequences of a large-scale fragmentation experiment for Neotropical bats : disentangling the relative importance of local and landscape-scale effects
Context
Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.
Objectives
We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.
Methods
We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.
Results
Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.
Conclusions
Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat
The complete mitogenome of the Roman snail Helix pomatia Linnaeus 1758 (Stylommatophora: Helicidae)
This study reports the complete mitochondrial sequence of the Roman snail, one of the largest terrestrial snails of Europe. Two specimens of Helix pomatia were sequenced, which had a sequence length of 14,070 and 14,072 base pairs. The mitogenome has the common metazoan makeup (13 protein-coding genes, two ribosomal RNAs, and 21 transfer RNAs) and the ‘typical’ Helicid gene order (Cytochrome Oxidase subunit III and tRNA-T translocated compared to other Helicoidea). All protein coding genes could be annotated with proper start and stop codons (no completion of stop codons by polyadenylation). The specimens have a sequence similarity of 99.0% (146 differences) and the average base composition is 29.7% A, 15.0% C, 17.9% G, and 37.4% T. Phylogenetic anlyses with available Helicid mitogenomes show Helicinae as monophyly and H. pomatia as the sister-group of (Cepaea nemoralis, Theba pisana, and Cornu aspersum)
The complete mitogenome of Orcula dolium (Draparnaud, 1801); ultra-deep sequencing from a single long-range PCR using the Ion-Torrent PGM
Abstract Background With the increasing capacity of present-day next-generation sequencers the field of mitogenomics is rapidly changing. Enrichment of the mitochondrial fraction, is no longer necessary for obtaining mitogenomic data. Despite the benefits, shotgun sequencing approaches also have disadvantages. They do not guarantee obtaining the complete mitogenome, generally require larger amounts of input DNA and coverage is low compared to sequencing with enrichment strategies. If the mitogenome could be amplified in a single amplification, additional time and costs for sample preparation might outweigh these disadvantages. Results A sequence of the complete mitochondrial genome of the pupilloid landsnail Orcula dolium is presented. The mitogenome was amplified in a single long-range (LR) PCR and sequenced on an Ion Torrent PGM (Life Technologies). The length is 14,063 nt and the average depth of coverage is 1112 X. This is the first published mitogenome for a member of the family Orculidae. It has the typical metazoan makeup of 13 protein coding genes (PCGs), 2 ribosomal RNAs (12S and 16S) and 22 transfer RNAs (tRNAs). Orcula is positioned between Pupilla and the Vertiginidae as the sister-group of Gastrocopta and Vertigo, together. An ancestral gene order reconstruction shows that Orthurethra in contrast to other Stylommatophora, have tRNA-H before tRNA-G and that the gene order in the ‘non-achatinoid’ clade is identical to that of closely related non-stylommatophoran taxa. Conclusions We show it is feasible to ultra-deep sequence a mitogenome from a single LR-PCR. This approach is particularly relevant to studies that have low concentrations of input DNA. It results in a more efficient use of NGS capacity (only the targeted fraction is sequenced) and is an effective selection against nuclear mitochondrial inserts (NUMTS). In contrast to previous studies based in particular on 28S, our results indicate that phylogeny reconstructions based on complete mitogenomes might be more suitable to resolve deep relationships within Stylommatophora. Ancestral gene order reconstructions reveal rearrangements that characterize systematic groups
Models of geochemical speciation: Structure and applications
Being able to predict the behavior of trace elements in the environment is crucial for environmental risk assessment studies. For this reason, modeling, in addition to experimental methods, has become an indispensable tool to better understand the (bio)-geochemistry of trace elements and the processes involved in their availability, transport, and ecotoxicity. In this chapter, we briefly outline the development of geochemical modeling over time and its basic principles. A comprehensive description of the state-of-the-art ion-binding and surface complexation models presently available for dissolved and particulate organic matter, mineral oxides of aluminium, iron, manganese, and silica and clay minerals is given. A significant part of this chapter is dedicated to the application of these models for studying surface waters and soils. The most common model platforms used for this purpose together with the available (thermodynamic) databases of model parameters are summarized. In two separate sections we highlight the application of an assemblage model (with submodels for the various adsorbents) to describe trace element solid-solution partitioning and speciation in surface waters and soils; here particular attention is given to the derivation of site-specific inputs concerning the geochemical reactive metal content and the contents of adsorbents (mineral oxides, clay, and organic matter). Consideration is therefore given to the most recent developments in bio-geochemical modeling to link metal speciation to bioavailability, biotic accumulation, and toxicity. Finally, future prospects of geochemical modeling are discussed, giving an overview of the potential directions for development
Influence of pH and Dissolved Organic Matter on Iron Speciation and Apparent Iron Solubility in the Peruvian Shelf and Slope Region
The chemical speciation of iron (Fe) in oceans is influenced by ambient pH, dissolved oxygen, and the concentrations and strengths of the binding sites of dissolved organic matter (DOM). Here, we derived new nonideal competitive adsorption (NICA) constants for Fe(III) binding to marine DOM via pH-Fe titrations. We used the constants to calculate Fe(III) speciation and derive the apparent Fe(III) solubility (SFe(III)app) in the ambient water column across the Peruvian shelf and slope region. We define SFe(III)app as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). A ca. twofold increase in SFe(III)app in the oxygen minimum zone (OMZ) compared to surface waters is predicted. The increase results from a one order of magnitude decrease in H+ concentration which impacts both Fe(III) hydroxide solubility and organic complexation. A correlation matrix suggests that changes in pH have a larger impact on SFe(III)app and Fe(III) speciation than DOM in this region. Using Fe(II) measurements, we calculated ambient DFe(III) and compared the value with the predicted SFe(III)app. The underlying distribution of ambient DFe(III) largely reflected the predicted SFe(III)app, indicating that decreased pH as a result of OMZ intensification and ocean acidification may increase SFe(III)app with potential impacts on surface DFe inventories
- …