94 research outputs found

    Rank Reduction of Correlation Matrices by Majorization

    Get PDF
    A novel algorithm is developed for the problem of finding a low-rank correlation matrix nearest to a given correlation matrix. The algorithm is based on majorization and, therefore, it is globally convergent. The algorithm is computationally efficient, is straightforward to implement, and can handle arbitrary weights on the entries of the correlation matrix. A simulation study suggests that majorization compares favourably with competing approaches in terms of the quality of the solution within a fixed computational time. The problem of rank reduction of correlation matrices occurs when pricing a derivative dependent on a large number of assets, where the asset prices are modelled as correlated log-normal processes. Mainly, such an application concerns interest rates.rank, correlation matrix, majorization, lognormal price processes

    More on Multidimensional Scaling and Unfolding in R: smacof Version 2

    Get PDF
    The smacof package offers a comprehensive implementation of multidimensional scaling (MDS) techniques in R. Since its first publication (De Leeuw and Mair 2009b) the functionality of the package has been enhanced, and several additional methods, features and utilities were added. Major updates include a complete re-implementation of multidimensional unfolding allowing for monotone dissimilarity transformations, including row-conditional, circular, and external unfolding. Additionally, the constrained MDS implementation was extended in terms of optimal scaling of the external variables. Further package additions include various tools and functions for goodness-of-fit assessment, unidimensional scaling, gravity MDS, asymmetric MDS, Procrustes, and MDS biplots. All these new package functionalities are illustrated using a variety of real-life applications

    第9章 大学コンソーシアムひょうご神戸 社会連携助成事業 : 「平常時・災害時における歴史資料の保全・修復ができる人材の育成事業

    Get PDF
    In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i) the theoretical foundations of ridge regression, (ii) its link to commonly used methods in animal breeding, (iii) the computational feasibility, and (iv) the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis). Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N<10,000) the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP). However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially

    Multivariate analysis reveals shared genetic architecture of brain morphology and human behavior.

    Get PDF
    Human variation in brain morphology and behavior are related and highly heritable. Yet, it is largely unknown to what extent specific features of brain morphology and behavior are genetically related. Here, we introduce a computationally efficient approach for multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) to estimate the genetic correlation between a large number of phenotypes simultaneously. Using individual-level data (N = 20,190) from the UK Biobank, we provide estimates of the heritability of gray-matter volume in 74 regions of interest (ROIs) in the brain and we map genetic correlations between these ROIs and health-relevant behavioral outcomes, including intelligence. We find four genetically distinct clusters in the brain that are aligned with standard anatomical subdivision in neuroscience. Behavioral traits have distinct genetic correlations with brain morphology which suggests trait-specific relevance of ROIs. These empirical results illustrate how MGREML can be used to estimate internally consistent and high-dimensional genetic correlation matrices in large datasets

    The Dark Side of Visionary Leadership in Strategy Implementation:Strategic Alignment, Strategic Consensus, and Commitment

    Get PDF
    Drawing from visionary leadership and strategy process research, we theorize and test the mechanism through which middle and lower-level managers’ visionary leadership affects their teams’ strategic commitment. The management literature extols the virtues of visionary leadership. In contrast to this positive stance, we reveal a dark side to visionary leadership. Our theoretical framework suggests that team manager visionary leadership harms team strategic consensus when the manager is not strategically aligned with the CEO, which in turn diminishes team commitment to the strategy. In contrast, when a team manager is strategically aligned with the CEO, team manager visionary leadership is positively related to team strategic consensus and subsequently to team strategic commitment. Data from 136 teams from two organizations support our moderated mediation model. A supplemental analysis of the content of strategic consensus and additional qualitative interviews with managers and employees in one of these organizations provide additional insights concerning the meaning of the theorized relations in practice

    The Molecular Genetic Architecture of Self-Employment

    Get PDF
    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg2/σP2= 25%, h2= 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10-5were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases
    corecore