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Multivariate analysis reveals shared genetic
architecture of brain morphology and human
behavior
Ronald de Vlaming 1,10, Eric A. W. Slob2,3,4,10, Philip R. Jansen 5,6, Alain Dagher 7, Philipp D. Koellinger1,8,

Patrick J. F. Groenen 9 & Cornelius A. Rietveld 2,3✉

Human variation in brain morphology and behavior are related and highly heritable. Yet, it is

largely unknown to what extent specific features of brain morphology and behavior are

genetically related. Here, we introduce a computationally efficient approach for multivariate

genomic-relatedness-based restricted maximum likelihood (MGREML) to estimate the

genetic correlation between a large number of phenotypes simultaneously. Using individual-

level data (N= 20,190) from the UK Biobank, we provide estimates of the heritability of gray-

matter volume in 74 regions of interest (ROIs) in the brain and we map genetic correlations

between these ROIs and health-relevant behavioral outcomes, including intelligence. We find

four genetically distinct clusters in the brain that are aligned with standard anatomical

subdivision in neuroscience. Behavioral traits have distinct genetic correlations with brain

morphology which suggests trait-specific relevance of ROIs. These empirical results illustrate

how MGREML can be used to estimate internally consistent and high-dimensional genetic

correlation matrices in large datasets.
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G lobal and regional gray matter volumes are known to be
linked to differences in human behavior and mental
health1. For example, reduced gray matter density has

been implicated in a wide range of neurodegenerative diseases
and mental illnesses2–5. In addition, differences in gray matter
volume have been related to cognitive and behavioral phenotypic
traits such as fluid intelligence and personality, although results
have not always been replicable6,7.

Variation in brain morphology can be measured noninvasively
using magnetic resonance imaging (MRI). Large-scale data col-
lection efforts, such as the UK Biobank8, that include both the
MRI scans and genetic data have enabled recent studies to dis-
cover the genetic architecture of human variation in brain mor-
phology and to explore the genetic correlations of brain
morphology with behavior and health9–13. These studies have
demonstrated that all features of brain morphology are genetically
highly complex traits and that their heritable component is
mostly due to the combined influence of many common genetic
variants, each with a small effect.

A corollary of this insight is that even the currently largest
possible genome-wide association studies (GWASs) were only
able to identify a small portion of the genetic variants underlying
the heritable components of brain morphology: The vast majority
of their heritability remains missing9–14. As a consequence, the
genetic correlations of regional brain volumes with each other, as
well as with human behavior and health have remained largely
elusive. However, such estimates could advance our under-
standing of the genetic architecture of the brain, for example,
regarding its structure and plasticity. Similarly, a strong genetic
overlap of specific features of brain morphology with mental
health would provide clues about the neural mechanisms behind
the genesis of disease15–17.

We developed multivariate genomic-relatedness-based restricted
maximum likelihood (MGREML) to provide a comprehensive map
of the genetic architecture of brain morphology. MGREML over-
comes several limitations of existing approaches to estimate herit-
ability and genetic correlations from molecular genetic (individual-
level) data. Contrary to existing pairwise bivariate approaches,
MGREML guarantees internally consistent (i.e., at least positive
semidefinite) genetic correlation matrices and it yields standard
errors that correctly reflect the multivariate structure of the data.
The software implementation of MGREML is computationally
substantially more efficient than both the traditional bivariate
genomic-relatedness-based restricted maximum likelihood
(GREML)18,19 and comparable multivariate approaches20–24.
Moreover, we show that MGREML allows for stronger statistical
inference than methods that are based on GWAS summary statis-
tics, such as bivariate linkage-disequilibrium (LD) score regression
(LDSC)25,26. In short, MGREML yields precise and internally
consistent estimates of genetic correlations across a large number of
traits when existing approaches applied to the same data are either
less precise or computationally unfeasible.

We leverage the advantages of MGREML by analyzing brain
morphology based on MRI-derived gray matter volumes in 74
regions of interest (ROIs). We also estimate the genetic correla-
tions of these ROIs with global measures of brain volume and
eight human behavioral traits that have well-known associations
with mental and physical health. The anthropometric measures
height and body-mass index are also analyzed, because of their
relationships with brain size6,13. Our analyses are based on data
from the UK Biobank brain imaging study27.

Results
Estimating genetic correlations. Several methods can be used to
estimate heritabilities and genetic correlations from molecular

genetic data on single-nucleotide polymorphisms (SNPs). One
class of these methods is based on GWAS summary
statistics25,26,28. Another class of methods is based on individual-
level data, such as GREML and variations of this
approach22–24,29–33. Methods based on GWAS summary statistics
such as LDSC25,26 and variants thereof34 can leverage the ever-
increasing sample sizes of GWAS meta- or mega-analyses35.
These methods are computationally efficient and benefit from the
fact that GWAS summary statistics are often publicly shared36,37.
However, the computationally more intensive methods based on
individual-level data, such as GREML are statistically more
powerful38. That is, the resulting estimates are more precise as
reflected in the size of the standard errors.

Due to the high costs of MRI brain scans, GWAS meta-analysis
samples for brain imaging genetics are still relatively small
compared to GWAS meta-analysis samples for traits that can be
measured at low cost (e.g., height39 and educational
attainment40). The UK Biobank brain imaging study (Methods)
is currently by far the largest available sample that includes both
MRI scans and genetic data, often surpassing the sample size of
most previous studies in neuroscience by an order of magnitude
or more9,10,13. Therefore, this dataset is particularly suitable for
our individual-level data analysis.

Irrespective of whether one uses GWAS summary statistics or
individual-level data, the use of bivariate methods poses another
challenge when computing genetic correlation across more than
two traits. In this case, the correlation estimates from bivariate
analyses of all pairwise combinations of traits are often simply
stacked, to form a ‘grand’ correlation matrix25,26,41. However, this
‘pairwise bivariate’ approach can result in genetic correlation
matrices that are not internally consistent (i.e., they describe
interrelationships across traits that cannot exist simultaneously).
In mathematical terms, the resulting matrices can be indefinite.
Although the correlation between two traits can vary between −1
and +1, their correlations with a third trait are naturally
bounded. For a set of three traits, the solution is positive
(semi)-definite when the correlations satisfy the following
condition: r212 þ r213 þ r223 � 2r12r13r23 ≤ 1, where rst denotes the
correlation between traits s and t. This condition is violated, for
instance, when pairwise correlations are estimated to be r12 = 0.9,
r13 = 0.9, and r23 = 0.2. In fact, the genetic correlation matrix in
the well-known atlas of genetic correlations is not positive
semidefinite25. A second consequence of the pairwise bivariate
approach is that the standard errors of the resulting genetic
correlation matrix do not adequately reflect the multivariate
structure of the data.

MGREML. Our multivariate extension of GREML estimation18,32

guarantees the internal consistency of the estimated genetic cor-
relation matrix by adopting an appropriate factor model for the
variance matrices (Supplementary Note 1). An important benefit
of this approach is that estimates are always valid, in the sense
that the likelihood is defined, even within the optimization pro-
cedure. Joint estimation also ensures that the standard errors of
the estimated genetic correlations reflect the multivariate struc-
ture of the data correctly. Therefore, methods such as genomic
structural equation modelling (genomic SEM)42 that use multi-
variate genetic correlation matrices as input may benefit from
using MGREML results, by avoiding the potentially distorting
pre-processing step of bending43 an indefinite genetic correlation
matrix. To deal with the computational burden and to make
MGREML applicable to large data sets in terms of individuals and
traits, we derived efficient expressions for the likelihood function
and developed a rapid optimization algorithm (Supplementary
Note 1). In Supplementary Note 3, we show that MGREML is
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computationally faster than pairwise bivariate GREML. More-
over, comparisons with ASReml20, BOLT-REML23, GEMMA22,
MTG224, and WOMBAT21 highlight the computational gains
afforded by MGREML. That is, none of these software packages is
able to deal with the dimensionality of our empirical application.
Finally, a comparison of results obtained with MGREML with
results obtained using LDSC shows that standard errors obtained
with MGREML are 32.7–50.6% smaller, illustrating the sub-
stantial gains in statistical power afforded by MGREML.

Analysis of brain morphology. We used MGREML to analyze
the heritability of and genetic correlations across 86 traits in
20,190 unrelated ‘white British’ individuals from the UK Biobank
(Fig. 1, Methods). The subset of 76 brain morphology traits
includes total brain volume (gray and white matter), total gray
matter volume, and gray matter volumes in 74 regions of interest
(ROIs) in the brain. Relative volumes were obtained by dividing
ROI gray matter volumes by total gray matter volume. The full set
of heritability estimates is available in Supplementary Data 1.
Figure 2a, b show that SNP-based heritability (h2SNPs) (i.e., the
proportion of phenotypic variance which can be explained by
autosomal SNPs) is on average highest in the insula, and in the
cerebellar and subcortical structures of the brain (average h2SNPs is
33.1, 32.4, and 29.5%, respectively, with corresponding standard
errors of 0.019 for all) and lowest in the parietal, frontal, and
temporal lobes of the cortex (average h2SNPs is 21.2, 21.4, and
25.2%, respectively, with corresponding standard errors of 0.019
for all). Grouping of the h2SNPs estimates in networks of intrinsic
functional connectivity44 reveals that ROIs in the heteromodal
cortex (frontoparietal, dorsal attention) are less heritable than
primary (visual, somatomotor), subcortical and cerebellar regions
(Fig. 3a).

The full set of estimated genetic correlations (rg) is available in
Supplementary Data 1. Using spatial mapping, Fig. 2c visualizes
the estimated genetic correlations across the relative volumes of
the cortical and subcortical brain areas. The largest positive
genetic correlations were found between the insular and frontal
regions (average rg= 0.17) and between the cerebellar and
subcortical areas (average rg= 0.15). The largest negative
correlations were present between the cerebellar and insular
regions (average rg=−0.18) and between the cerebellar and
frontal regions (average rg=−0.15) (Fig. 2d). Figure 3b shows
that the genetic correlations are particularly strong within
intrinsic connectivity networks, especially the visual, somatomo-
tor, subcortical, and cerebellum networks, possibly because of
lower experience-dependent plasticity in these brain regions
compared to heteromodal and associative areas45. Using Ward’s
method for hierarchical clustering46, we identify four clusters

within the estimated genetic correlations for the 74 ROIs in the
brain (Fig. 4). The first cluster (18 ROIs) includes most of the
frontal cortical areas of the brain, the second (18 ROIs) the
cerebellar cortex, the third (18 ROIs) subcortical structures
including the brain stem, and the last cluster (20 ROIs) contains a
mixture of temporal and occipital brain areas.

We also used MGREML to estimate the genetic correlations
between brain morphology and eight human behavioral traits
that are known to be related to health and that have previously
been studied in large-scale GWASs, as well as the anthropo-
metric measures height and body-mass index. Statistically
significant correlations are highlighted in Supplementary Data 1
(Panel c). Spatial maps of the genetic correlation between brain
morphology and the behavioral traits are shown in Fig. 5. For
subjective well-being, we find the strongest genetic correlation
with the Middle Frontal Gyrus (Fig. 5a, rg= 0.21, corresponding
standard error 0.088), a region that has been linked before to
emotion regulation47. The genetic correlations of the ROIs with
neuroticism (Fig. 5b) and depression (Fig. 5c) are generally weak
and insignificant, potentially reflecting the coarseness of these
phenotypic measures in the UK Biobank data. The strongest
genetic correlation with the number of alcoholic drinks
consumed per week is with the Lateral Occipital Cortex, superior
and inferior divisions (Fig. 5d, rg= 0.23 and rg= 0.18, respec-
tively, corresponding standard errors 0.106 and 0.092). Although
the phenotypic correlations between the analyzed ROIs and
alcohol consumption are generally negative48, these particular
brain regions are among those implicated in the affective
response to drug cues based on the perception-valuation-action
model49. For educational attainment and intelligence, the
strongest correlations are found in the frontal lobe region
(rg=−0.13, corresponding standard error 0.065, between
educational attainment and the Superior Frontal Gyrus, and
rg= 0.16, corresponding standard error 0.056, between intelli-
gence and the Frontal Medial Cortex). Figure 5e, f show that the
genetic correlation structures estimated for educational attain-
ment and intelligence are largely similar, in line with earlier
studies showing the strong genetic overlap between these two
traits50. Genetic correlations of the ROIs with visual memory
(Fig. 5g) are insignificant, and the strongest genetic correlation of
reaction time is with the Middle Temporal Gyrus, temporoocci-
pital part (Fig. 5h, rg= 0.20, corresponding standard error
0.085). Activity within the middle temporal gyrus has been
linked before with reaction time51.

Earlier studies suggest that the size of the brain is positively
associated with traits such as intelligence6. When analyzing
absolute brain volumes of the ROIs rather than relative brain
volumes (i.e., relative to total gray matter volume in the brain), we
indeed observe robust positive relationships between the absolute

Fig. 1 Visualization of multivariate genomic-relatedness-based restricted maximum likelihood (MGREML). a Common genetic variants (single-
nucleotide polymorphisms, “SNPs”) in the human genome b are used to construct a genomic-relatedness matrix (GRM) capturing pairwise genetic
similarity between individuals in the sample. c MGREML uses this GRM to jointly estimate heritabilities of phenotypes and genetic correlations (rg) across
multiple phenotypes, by quantifying the degree to which genetic similarity maps to phenotypic similarity (across all individuals and phenotypes in the
sample). In our empirical application, 1,384,830 common SNPs are used to analyze the genetic correlations across T= 86 phenotypes in a sample of
N= 20,190 unrelated individuals.
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volumes of the ROIs on the one hand and height and intelligence
on the other hand (Supplementary Data 3). In the set of estimated
correlations across the ROIs, the main differences with the results
obtained using relative brain volumes (Supplementary Data 1)
are that the genetic correlations within the cerebellum clusters are
slightly smaller and that the positive correlations within the
subcortical structures are somewhat larger.

Discussion
We designed MGREML to estimate high-dimensional genetic
correlation matrices from large-scale individual-level genetic data
in a computationally efficient manner while guaranteeing the
internal consistency of the estimated genetic correlation matrix.
For comparison, we used pairwise bivariate GREML to obtain a
genetic correlation matrix using the exact same set of individuals

Fig. 2 Spatial mapping of SNP-based heritability and genetic correlation estimates obtained using MGREML (N= 20,190) of relative gray matter
volumes in different cortical and subcortical brain areas. a SNP-based heritability of relative gray matter volume mapped to the respective brain region in
three dimensions. Each dot represents an area, the color and size represent the heritability of that area. b SNP-based heritability and standard error of
relative gray matter volume of each brain region grouped by global anatomical area. c Genetic correlations between the cortical and subcortical relative
gray matter volumes. The opacity and color represent the strength of the genetic overlap between these two areas (blue vertices represent a negative
correlation, red vertices a positive correlation). Only genetic correlations larger than |0.25| are shown. d Average genetic correlations in broad anatomical
areas of the brain.
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(N= 20,190) and traits (T= 86) as in our main analysis. While
the resulting estimates are fairly similar (Supplementary Data 2),
the resulting genetic correlation matrix is indefinite (13 out of the
86 eigenvalues are negative). Such an indefinite matrix poses a
challenge for multivariate methods, such as Genomic SEM42, that
require a genetic correlation matrix as starting point for a follow-
up analysis. Using MGREML results avoids this challenge, as
MGREML by design guarantees the estimation of a positive
(semi)-definite genetic correlation matrix.

Moreover, we conducted GWASs and bivariate LDSC26 ana-
lyses to obtain a genetic correlation matrix using the pairwise
bivariate approach for the same empirical application (Supple-
mentary Data 5). We find that the standard errors of the h2SNPs

estimates obtained using MGREML are on average 32.7% smaller
than those obtained using LDSC. The standard errors of the
genetic correlations obtained using MGREML are on average
50.6% smaller compared to those obtained using LDSC, illus-
trating the advantages of MGREML in terms of statistical power.
More specifically, when applying a two-sided significance test to
each estimated genetic correlation (null hypothesis: rg= 0; alter-
native hypothesis: rg ≠ 0), MGREML yields 1519 significant
correlations at the 5% level, whereas the pairwise bivariate LDSC
approach yields only 954 significant correlations. Thus, the gain
in statistical efficiency is larger than the efficiency gained by
HDL34, a recently developed variation of bivariate LDSC that
accounts for autocorrelation of summary statistics across the
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genome as a result of LD. Importantly, the genetic correlation
matrix obtained using bivariate LDSC is again not positive
semidefinite and thus the estimated genetic correlations across
traits are not internally consistent.

Our main results tacitly assume a homoscedastic per-SNP
heritability, in line with GCTA19. This GCTA model approach
may be suboptimal under some circumstances, including genetic
drift and various forms of natural selection52,53. We therefore
repeated the estimation of the genetic correlation matrix using
the LDAK-Thin model30,31 (Supplementary Data 6) and the
SumHer54 approach (Supplementary Data 7) that both assume
heteroscedastic random SNP effects. Importantly, results based
on the LDAK-Thin model can also be readily obtained using the
MGREML software tool, because the choice of the heritability
model only affects the construction of the genomic-relatedness
matrix (GRM). Comparison of results shows that the heritability
estimates are on average fairly similar across methods (Supple-
mentary Data 8), and illustrates again that individual-level data
methods (the GCTA model and LDAK-Thin model in
MGREML) are statistically more efficient than summary statistics
methods (LDSC and SumHer). In our empirical application, we
find that the fit of MGREML in terms of the log-likelihood is

slightly better when assuming the GCTA model than when
assuming the LDAK-Thin model (Supplementary Note 3). The
similarity of the estimates across different heritability models may
be explained by differential selection across phenotypes, and
balancing out of underestimations and overestimations of con-
tributions to h2SNPs in low- and high-LD regions31,52.

Our results show marked variation in the estimated heritability
across cortical gray matter volumes, with on average higher
heritability estimates in subcortical and cerebellar areas than in
cortical areas (Fig. 2b). Grouping of h2SNPs estimates by networks
of intrinsic functional connectivity suggests that heritability is
particularly low in brain areas with presumed stronger
experience-dependent plasticity (Fig. 3a). These results suggest
that neocortical areas of the brain are under weaker genetic
control perhaps reflecting greater environmentally determined
plasticity45,55. Furthermore, the estimated genetic correlations
suggest the presence of four genetically distinct clusters in the
brain (Fig. 4). These clusters largely correspond with the con-
ventional subdivision of the brain in different lobes based on
anatomical borders56. The estimated genetic correlations also
provide evidence for a shared genetic architecture of traits
between which an association has been observed before in

Fig. 5 Spatial mapping of genetic correlation estimates obtained using MGREML. (N= 20,190) of relative gray matter volumes of the 74 regions of
interest in the brain and 8 behavioral traits. Blue and red points represent negative and positive genetic correlations, respectively. Diamonds represent
estimates that are significant at the 5% level. a Subjective well-being. b Neuroticism. c Depression. d Alcoholic drinks per week. e Educational attainment.
f Intelligence. g Visual spatial memory. h Reaction time.
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phenotypic studies such as between intelligence and educational
attainment50. In addition, genetic correlations were identified
between alcohol consumption and cerebellar volume, and
between subjective well-being and the temporooccipital part of
the Middle Temporal Gyrus (Supplementary Data 1). We caution
that these relationships may be somewhat different in the general
population due to the nonrandom selection of the population into
the UK Biobank sample57 and potential gene–environment
correlations58.

To verify that our results are not merely a reflection of the
physical proximity of brain regions, we regressed the estimated
genetic correlations on the physical distance between the different
brain regions. Although this correction procedure decreased the
estimated genetic correlations by 17.4%, the main patterns are
still observed. For the same reason, we recreated the dendogram
(Fig. 3) after aggregating the results for subregions into an average
for the larger region because the optimization procedure of
MGREML puts equal weight on each trait and does not account
for physical proximity. The results of this robustness check show
that the four identified clusters do not merely reflect the number
of analyzed measures for a specific brain region.

Estimates of heritability increase our understanding of the
relative impact of genetic and environmental variation on
traits14,32, and estimates of genetic correlation lead to a better
understanding of the shared biological pathways between traits59.
Joint analysis of multiple traits may also improve the predictive
power of genetic models60. MGREML has been designed to
estimate both SNP-based heritability and genetic correlations in a
computationally efficient and internally consistent manner using
individual-level genetic data. The efficiency of its optimization
algorithm makes it possible to use MGREML to estimate high-
dimensional genetic correlation matrices in large datasets, such as
the UK Biobank.

Methods
Sample and data. Participants of this study were sourced from UK Biobank. UK
Biobank is a prospective cohort study in the UK that collects physical, health, and
cognitive measures, and biological samples (including genotype data) in about
500,000 individuals8. In 2016, UK Biobank started to collect brain imaging data
with the aim to scan 100,000 subjects by 202227,61. UK Biobank has received ethical
approval from the National Health Service North West Centre for Research Ethics
Committee (11/NW/0382) and has obtained informed consent from its
participants.

We selected the 43,691 individuals with available genotype data from the UK
Biobank brain imaging study who self-identified as ‘white British’ and with similar
genetic ancestry based on a principal component analysis. After stringent quality
control (Supplementary Note 4), we estimated pairwise genetic relationships using
1,384,830 autosomal common (Minor Allele Frequency ≥ 0.01) SNPs and retained
37,392 individuals whose pairwise relationship was estimated to be less than 0.025
(approximately corresponding to second- or third-degree cousins or more distant
shared ancestry). From these unrelated individuals, we retained the 20,190
individuals (9747 males and 10,433 females) with complete information on all 86
traits in our analyses. The age of these individuals ranges from 40 to 72 years, and
the average age is 54.79 years.

A description of all the variables used in the empirical analyses is available in
Supplementary Note 2. Mapping of each cortical region to a network of intrinsic
functional connectivity (Fig. 3) is based on the assignment of each brain parcel in
the Harvard-Oxford atlas62 to the intrinsic functional connectivity network44 with
the highest overlap. These networks were earlier identified using functional
magnetic resonance imaging44.

Statistical framework. In a genome-wide association study (GWAS) of quanti-
tative trait y, the effect of single-nucleotide polymorphism (SNP) m on y is
modelled as:

yj ¼ g�jmα
�
m þ x0jβþ uj; ð1Þ

where yj is the phenotype of individual j and g�jm is the raw genotype (i.e., a value
equal to zero, one, or two, indicating the number of copies of the coded allele) for
the same individual and the given SNP. In this model, α�m is the per-allele effect of
SNP m on y, x0j is a 1×k vector of control variables with k×1 vector of effects β, and
uj is the error term.

If y has mean zero and/or an intercept is included in the set of control variables,
we can assume, without loss of generality, that SNPs are standardized in
accordance with their distribution under Hardy–Weinberg equilibrium. That is, we
define gjm ¼ ðg�jm � 2f mÞ½2f mð1� f mÞ��0:5, where gjm denotes the standardized
genotype for individual j and SNP m, and where fm denotes the empirical allele
frequency of the same SNP. Now, g�jmα

�
m in Eq. (1) can be replaced by gjmαm, where

αm ¼ α�m½2f mð1� f mÞ�0:5 is the effect of standardized SNP m. In addition, we can
consider the contribution of all SNPs jointly using the following model:

yj ¼ g0jαþ x0jβþ εj;where g
0
jα ¼ gj1α1 þ ¼ þ gjMαM : ð2Þ

Here, g0j is the 1×M vector of standardized genotypes for individual j, α is the
M×1 vector of effects, and εj is the error term in this model. For a sample of N
individuals (Fig. 1, Panel a), Eq. (2) can be written in matrix notation as:

y ¼ Gαþ Xβþ ε; ð3Þ
where G is the N×M matrix of standardized genotypes, X is the N×k matrix of
control variables, and ε is the N×1 vector of errors. In genomic-relatedness-based
restricted maximum likelihood (GREML)32 as implemented in GCTA19, β is
assumed to be fixed and SNP effects and errors are assumed to be random, viz.,
α � Nð0; IMσ2αÞ and ε � Nð0; INσ2EÞ, where σ2α is the variance in SNP effects and σ2E
the variance in errors. Now, Gα is the total genetic contribution, which follows a
Nð0; GG0σ2αÞ distribution. Under this model, the phenotypic variance matrix across
individuals can be decomposed as:

VarðyÞ ¼ Aσ2G þ INσ
2
E; ð4Þ

where A = M−1GG′ is the genomic-relatedness matrix (GRM), capturing genetic
similarity between individuals based on all SNPs under consideration (Fig. 1, Panel
b), and σ2G ¼ Mσ2α is the total contribution of additive, linear effects of SNPs to
phenotypic variance. The SNP-based heritability h2SNPs of y is then defined as:

h2SNPs ¼
σ2G

σ2G þ σ2E
: ð5Þ

Importantly, α � Nð0; IMσ2αÞ is equivalent to assuming all SNPs explain the
same proportion of phenotypic variance. As a result, this assumption about SNP
effects tacitly imposes a strong relation between allele frequencies and effect sizes,
where the per-allele effects of rare variants are, on average, considerably larger than
the per-allele effects of more common variants. Moreover, this assumption does
not differentiate between regions of low and high linkage disequilibrium (LD).
Therefore, other perhaps more realistic assumptions about the distribution of SNP
effects have been proposed and utilized30,31.

These alternatives typically only affect the way in which GRM A in Eq. (4) is
constructed. More specifically, when heteroscedastic SNP effects (i.e.,
α � Nð0;Dσ2αÞ) are assumed (with D a diagonal matrix reflecting, e.g., the strength
of the relationship between allele frequencies and effect sizes), it follows that
Gα ¼ GD0:5α� , where α� � Nð0; IMσ2αÞ. In this case, by defining A = d−1GDG′,
with d being the sum of the diagonal elements of D, Eqs. (4) and (5) still apply. As
such, our model also lends itself well for application to a GRM that is calculated
using alternatives to GCTA19, such as LDAK31.

Irrespective of the precise definition of A, we can write the model in Eq. (3) as:

y � NðXβ; σ2GAþ σ2EIN Þ: ð6Þ
For two quantitative traits, observed in the same set of N individuals, this model

can be generalized to the following bivariate model18:

y1
y2

� �
� N

X1 0

0 X2

� �
β1
β2

� �
;

�
σG11

A σG12
A

σG12
A σG22

A

�
þ
�
σE11

IN σE12
IN

σE12
IN σE22

IN

� !
;

ð7Þ
where X1 (resp. X2) is the N×k1 (N×k2) matrix of control variables for trait y1 (y2)
with fixed effects β1 (β2), σGst

is the genetic covariance and σEst
the environmental

covariance between traits s and t, for s= 1, 2 and t= 1, 2. The Kronecker product
(denoted by ‘⊗’) can be used to extend the model in Eq. (7) to a multivariate model
for T different traits (i.e., yt for t = 1, …, T), as follows60,63:

y1
y2

..

.

yT

0
BBB@

1
CCCA � N

X1 0 0

0 . .
.

0

0 0 XT

0
BB@

1
CCA

β1

..

.

βT

0
BB@

1
CCA;VG � Aþ VE � IN

0
BB@

1
CCA; ð8Þ

where

VG ¼
σG11

¼ σG1T

..

. . .
. ..

.

σG1T
¼ σGTT

0
BB@

1
CCA andVE ¼

σE11 ¼ σE1T

..

. . .
. ..

.

σE1T
¼ σETT

0
BB@

1
CCA: ð9Þ

In this multivariate model, the SNP-based heritability (h2SNPs) of trait t, denoted
by h2SNPsðtÞ, and the genetic correlation (rg) between traits s and t (Fig. 1, Panel c),
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denoted by rg(s, t), are defined as:

h2SNPsðtÞ ¼
σGtt

σGtt
þ σEtt

and rg ðs; tÞ ¼
σGstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiσGtt

σGss

p ; ð10Þ

for s = 1, …, T and t = 1, …, T.

Optimization procedure. To estimate the genetic and environmental covariance
matrices VG and VE in Eqs. (8) and (9), we use restricted maximum likelihood
(REML) estimation. To maximize the likelihood function, we use a quasi-Newton
method. More specifically, we use a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm64. Supplementary Note 1 provides highly efficient expressions for the
log-likelihood and gradient, which are needed in the optimization algorithm. These
expressions make it possible to estimate the multivariate model with a time
complexity that scales linearly with the number of observations and quadratically
with the number of traits. The optimization procedure guarantees that the esti-
mated matrices VG and VE are positive (semi)-definite, by imposing an underlying
factor model for both matrices. After optimization, standard errors can be calcu-
lated with a time complexity that scales linearly with the number of observations
and quadratically with the number of parameters in the model (which in turn
scales quadratically with the number of traits). This optimization procedure is fully
incorporated in MGREML, a command-line tool written in Python 3. We
recommend using the GCTA-GREML power calculator65 for ex-ante power cal-
culations, because the accuracy of estimates from MGREML and pairwise bivariate
GREML is fairly similar (Supplementary Data 8).

Statistics and reproducibility. The empirical results in this study have been
obtained using the command-line tool MGREML. Supplementary Note 4 details
the analysis pipeline that has been used to obtain the heritability and genetic
correlation estimates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Individual-level genotype and phenotype data are available by application via the UKB
Biobank website (https://www.ukbiobank.ac.uk/). The authors declare that the results
supporting the findings of this study are available within the paper and its supplementary
files. Figures 2–5 are based on the MGREML results available in Supplementary Data 1.

Code availability
MGREML is available at https://github.com/devlaming/mgreml as a ready-to-use
command-line tool66. The GitHub page comes with a full tutorial on the usage of this
tool. An MGREML analysis of 86 traits, observed in a sample of 20,190 unrelated
individuals (i.e., the dimensionality of the dataset that we use in our empirical
application), takes around four hours on a four-core laptop with 16GB of RAM.
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