
Rank Reduction of Correlation Matrices by

Majorization1

Raoul Pietersz2, Patrick J. F. Groenen3

First version: 14 January 2004, this version: 8 September 2004

Abstract. A novel algorithm is developed for the problem of finding a low-
rank correlation matrix nearest to a given correlation matrix. The algorithm
is based on majorization and, therefore, it is globally convergent. The algo-
rithm is computationally efficient, is straightforward to implement, and can
handle arbitrary weights on the entries of the correlation matrix. A simula-
tion study suggests that majorization compares favourably with competing
approaches in terms of the quality of the solution within a fixed computa-
tional time. The problem of rank reduction of correlation matrices occurs
when pricing a derivative dependent on a large number of assets, where the
asset prices are modelled as correlated log-normal processes. Mainly, such
an application concerns interest rates.

Key words: rank, correlation matrix, majorization, lognormal price pro-
cesses

JEL Classification: G13

1We are grateful for comments of Antoon Pelsser and seminar participants at ABN
AMRO Bank, Belgian Financial Research Forum 2004 (Brussels, Belgium), ECMI Confer-
ence 2004 (Eindhoven, The Netherlands) and MC2QMC Conference 2004 (Juan-les-Pins,
France).

2Erasmus Research Institute of Management, Erasmus University Rotterdam, P.O. Box
1738, 3000 DR Rotterdam, The Netherlands (e-mail: pietersz@few.eur.nl) and Product
Development Group (HQ7011), ABN AMRO Bank, P.O. Box 283, 1000 EA Amsterdam,
The Netherlands

3Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rot-
terdam, The Netherlands (e-mail: groenen@few.eur.nl)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9315332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In this paper, we study the problem of finding a low-rank correlation matrix
nearest to a given (correlation) matrix. First we explain how this problem
occurs in an interest rate derivatives pricing setting. We will focus on interest
rate derivatives that depend on several rates such as the 1 year LIBOR
deposit rate, the 2 year swap rate, etc. An example of such a derivative is
a Bermudan swaption. A Bermudan swaption gives its holder the right to
enter into a fixed maturity interest rate swap at certain exercise dates. At an
exercise opportunity, the holder has to choose between exercising then or hold
the option with the chance of entering into the swap later at more favourable
interest rates. Evidently, the value depends not only on the current available
swap rate but, amongst others, also on the forward swap rates corresponding
to future exercise dates. In contrast, an example of a derivative that is
dependent on a single interest rate is a caplet, which can be viewed as a call
option on LIBOR. In this case, the value of the caplet depends only on a
single forward LIBOR rate.

Here, we will focus on derivatives depending on several rates. Our discus-
sion can however also be applied to the situation of a derivative depending
on several assets. To do so a model is set up that specifies the behaviour of
the asset prices. Each of the asset prices is modelled as a log-normal martin-
gale under its respective forward measure. Additionally, the asset prices are
correlated. Suppose we model n correlated log-normal price processes,

(1)
dsi

si

= . . . dt + σidw̃i, 〈dw̃i, dw̃j〉 = rij,

under a single measure. Here si denotes the price of the ith asset, σi its
volatility and w̃i denotes the associated driving Brownian motion. Brownian
motions i and j are correlated with coefficient rij, the correlation coefficient
between the returns on assets i and j. The matrix R = (rij)ij should be
positive semidefinite and should have a unit diagonal. In other words, R
should be a true correlation matrix. The term . . . dt denotes the drift term
that stems from the change of measure under the non-arbitrage condition.
The models that fit into the framework of (1) and which are most relevant
to our discussion are the LIBOR and swap market models for valuation of
interest rate derivatives. These models were developed by Brace, Ga̧tarek &
Musiela (1997), Jamshidian (1997) and Miltersen, Sandmann & Sondermann
(1997). In this case, an asset price corresponds to a forward LIBOR or swap
rate. For example, if we model a 30 year Bermudan swaption with annual
call and payment dates, then our model would consist of 30 annual forward
LIBOR rates or 30 co-terminal forward swap rates. In the latter case, we

2

consider 30 forward starting annual-paying swaps, starting at each of the 30
exercise opportunities and all ending after 30 years. Model (1) could however
be applied to a derivative depending on a number of, for example, stocks,
too.

Given the model (1), the price of any derivative depending on the as-
sets can be calculated by non-arbitrage arguments. Because the number of
assets is assumed to be high and the derivative is assumed complex in this
exposition, the derivative value can be calculated only by Monte Carlo sim-
ulation. To implement scheme (1) by Monte Carlo we need a decomposition
R = XXT , with X an n×n matrix. In other words, if we denote the ith row
vector of X by xi, then the decomposition reads 〈xi,xj〉 = rij, where 〈., .〉
denotes the scalar product. We then implement the scheme

dsi

si

= . . . dt + σi

{
xi1dw1 + · · ·+ xindwn

}
, 〈xi,xj〉 = rij,(2)

where the wi are now independent Brownian motions. Scheme (2) indeed
corresponds to scheme (1) since both volatility and correlation are imple-
mented correctly. The instantaneous variance is 〈dsi/si〉 = σ2

i dt since ‖xi‖ =
rii = 1 and volatility is the square root of instantaneous variance divided by
dt. Moreover, for the instantaneous covariance we have 〈dsi/si, dsj/sj〉 =
σiσj〈xi,xj〉dt = σiσjrijdt.

For large interest rate correlation matrices, usually almost all variance
(say 99%) can be attributed to only 3–6 stochastic Brownian factors. There-
fore, (2) contains a large number of almost redundant Brownian motions
that cost expensive computational time to simulate. Instead of taking into
account all Brownian motions, we would wish to do the simulation with a
smaller number of factors, d say, with d < n and d typically between 2 and
6. The scheme then becomes

dsi

si

= . . . dt + σi

{
xi1dw1 + · · ·+ xiddwd

}
, 〈xi,xj〉 = rij.

The n × d matrix X is a decomposition of R. This approach immediately
implies that the rank of R be less than or equal to d. For financial correlation
matrices, this rank restriction is generally not satisfied. It follows that an
approximation be required. We could proceed in two possible ways. The first
way involves approximating the covariance matrix (σiσjrij)ij. The second
involves approximating the correlation matrix while maintaining an exact fit
to the volatilities. In a derivatives pricing setting, usually the volatilities
are well-known. These can be calculated via a Black-type formula from the
European option prices quoted in the market, or mostly these volatilities
are directly quoted in the market. The correlation is usually less known

3

and can be obtained in two ways. First, it can be estimated from historical
time series. Second, it can be implied from correlation sensitive market-
traded options such as spread options. A spread option is an option on
the difference between two rates or asset prices. Such correlation sensitive
products are not traded as liquidly as the European plain-vanilla options.
Consequently, in both cases of historic or market-implied correlation, we are
more confident of the volatilities. For that reason, in a derivative pricing
setting, we approximate the correlation matrix rather than the covariance
matrix.

The above considerations lead to solving the following problem:

(3)
Find X ∈ Rn×d,

to minimize f(X) := 1
c

∑
i<j wij(rij − 〈xi,xj〉)2,

subject to ‖xi‖2 = 1, i = 1, . . . , n.

Here wij are nonnegative weights and c := 4
∑

i<j wij. The objective value
f is scaled by the constant c in order to make it independent of the problem
dimension n. Because each term rij − 〈xi,xj〉 is always between 0 and 2, it
follows for the choice of c that f is always between 0 and 1. The weights wij

have been added for three reasons:

• For squared differences, a large difference will be weighted more than
a small difference. The weights can then be appropriately changed to
adjust for this.

• Financial reasons may sometimes compel us to assign higher weights to
particular correlation pairs. For example, we could be more confident
about the correlation between the 1 and 2 year swap rates than about
the correlation between the 8 and 27 year swap rates.

• The objective function with weights has been considered before in the
literature. See for example Rebonato (1999b, Section 10). Rebonato
(2002, Section 9) provides an excellent discussion of the pros and cons
of using weights.

The simplest case of f is f(X) := c−1‖R−XXT‖2
F , where ‖ · ‖F denotes the

Frobenius norm, ‖Y‖2
F := tr(YYT) for matrices Y. This objective function

(which we shall also call ‘Frobenius norm’) fits in the framework of (3); it
corresponds to the case of all weights equal. The objective function in (3)
will be referred to as ‘general weights’.

In the literature, there exist five algorithms for minimizing f defined in
(3). These methods will be outlined in the next section and will be shown to
have several disadvantages, namely none of the methods is simultaneously

4

(i) efficient,

(ii) straightforward to implement,

(iii) able to handle general weights and

(iv) guaranteed to converge to a local minimum.

In this paper, we develop a novel method to minimize f that simultaneously
has the four mentioned properties. The method is based on iterative ma-
jorization that has the important property of guaranteed convergence to a
stationary point. The algorithm is straightforward to implement. We show
that the method can efficiently handle general weights. We investigate em-
pirically the efficiency of majorization in comparison to other methods in
the literature. The benchmark tests that we will consider are based on the
performance given a fixed small amount of computational time. This is ex-
actly the situation in a finance setting: decisions based on derivative pricing
calculations have to be made in a limited amount of time.

The remainder of this paper is organized as follows. First, we provide
an overview of the methods available in the literature. Second, the idea of
majorization is introduced and the majorizing functions are derived. Third,
an algorithm based on majorization is given along with reference to associated
MATLAB code. Global convergence and the local rate of convergence are
investigated. Fourth, we present empirical results. The paper ends with some
conclusions.

2 Literature Review

We describe five existing algorithms available in the literature for minimizing
f . For each algorithm, it is indicated whether it can handle general weights.
If not, then the most general objective function it can handle stems from
the weighted Frobenius norm ‖ · ‖F,Ω with Ω a symmetric positive definite
matrix, where ‖X‖2

F,Ω := tr(XΩXTΩ). The objective function f(X) :=
c−1‖R−XXT‖F,Ω will be referred to as ‘weighted Frobenius norm’ too.

First, we mention the ‘modified principal component analysis (PCA)’
method. For ease of exposition, we restrict to the case of the Frobenius norm,
however the method can be applied to the weighted Frobenius norm as well
though not for general weights. Modified PCA is based on an eigenvalue
decomposition R = QΛQT , with Q orthonormal and Λ the diagonal matrix
with eigenvalues. If the eigenvalues are ordered descendingly then a low-
rank decomposition with associated approximated matrix close to the original

5

matrix is found by

{XPCA}i =
z

‖z‖2

,(4)

z := {QdΛ
1/2
d }i, i = 1, . . . , n.(5)

Here {Y}i denotes the ith row of a matrix Y, Qd the first d columns of
Q, and Λd the principal sub-matrix of Λ of degree d. Ordinary PCA stops
with (5) and it is the scaling in (4) that is the ‘modified’ part, ensuring
that the resulting correlation matrices have unit diagonal. Modified PCA is
popular among financial practitioners and implemented in numerous financial
institutions. The modification of PCA in this way is believed to be due to
Flury (1988). For a description in a finance related article, see, for example,
Hull & White (2000). Modified PCA is easy to implement, because almost
all that is required is an eigenvalue decomposition. The calculation is almost
instant, and the approximation is reasonably accurate. A strong drawback of
modified PCA is its non-optimality: generally one may find decompositions
X (even locally) for which the associated correlation matrix XXT is closer
to the original matrix R than the PCA-approximated correlation matrix
XPCAXT

PCA. The modified PCA approximation becomes worse when the
magnitude of the left out eigenvalues increases.

The second algorithm that we discuss, is the geometric programming ap-
proach of Grubǐsić & Pietersz (2004). Here, the constraint set is equipped
with a differentiable structure. Subsequently geometric programming is ap-
plied, which can be seen as Newton-Rhapson or conjugate gradient over
curved space. By formulating these algorithms entirely in terms of differ-
ential geometric means, a simple expression is obtained for the gradient.
The latter allows for an efficient implementation. Until now the geometric
programming approach has been shown empirically to be the most efficient
algorithm for finding the nearest low-rank correlation matrix, see Grubǐsić &
Pietersz (2004, Section 6). This result was obtained in a particular numeri-
cal setting with a large number of randomly generated correlation matrices.
Another advantage of geometric programming is that it can handle general
weights. However, a drawback of the geometric programming approach is
that it takes many lines of non-straightforward code to implement, which
may hinder its use for non-experts.

As the third algorithm, we mention the Lagrange multiplier technique
developed by Zhang & Wu (2003) and Wu (2003). This method lacks guar-
anteed convergence: Zhang & Wu (2003, Proposition 4.1) and Wu (2003,
Theorem 3.4) prove the following result. The Lagrange multiplier algorithm
produces a sequence of multipliers for which accumulation points exist. If, for

6

the original matrix plus the Lagrange multipliers of an accumulation point,
the dth and (d + 1)th eigenvalues have different absolute values, then the
resulting rank-d approximation is a global minimizer of problem (3). How-
ever, the condition that the dth and (d + 1)th eigenvalues are different has
not been guaranteed. In numerical experiments, this equal-eigenvalues phe-
nomenon occurs. Therefore, convergence of the Lagrange multiplier method
to a global minimum or even to a stationary point is not guaranteed. It is
beyond the scope of this paper to indicate how often this ‘non-convergence’
occurs. If the algorithm has not yet converged, then the produced low-rank
correlation matrix will not satisfy the diagonal constraint. The appropriate
adaptation is to re-scale the associated configuration similarly to the modified
PCA approach (4). For certain numerical settings, the resulting algorithm
has been shown to perform not better and even worse than the geometric
programming approach (Grubǐsić & Pietersz 2004). Another drawback of
the Lagrange multiplier algorithm is that only the weighted Frobenius norm
can be handled and not general weights.

Fourth, we mention the ‘parametrization method’ of Rebonato (1999a),
Rebonato (1999b, Section 10), Brigo (2002), Rapisarda, Mercurio & Brigo
(2002) and Rebonato (2002, Section 9). In this method, each row vector of
the n× d configuration matrix X is parameterized by spherical coordinates.
Subsequently, non-linear programming algorithms such as Newton-Rhapson
or conjugate gradient are applied on the ‘parameter’ or ‘angle’ space. In
essence, this approach is the same as the geometric programming approach,
bar the fundamental difference in the choice of coordinates. The parametri-
zation by spherical coordinates implies that the objective function is given
in terms of trigonometric sin and cos functions. In turn, these yield a com-
putational burden when calculating the derivative, which hinders an efficient
implementation. Grubǐsić & Pietersz (2004, Section 6) have shown empiri-
cally for a particular numerical setting with many randomly generated corre-
lation matrices that the parametrization method is numerically less efficient
than either the geometric programming approach or the Lagrange multiplier
approach. The parametrization approach can handle general weights.

Fifth, we mention the alternating projections method, which can only
be used when there are no rank restrictions (d := n) and only with the
weighted Frobenius norm. To understand the methodology, note that min-
imization Problem (3) with equal weights and d := n can be written as
min{‖R − C‖2

F ; C º 0, diag(C) = I}. The two constraint sets {C º 0}
and {diag(C) = I} are both convex. The convexity was cleverly exploited
by Higham (2002), in which it was shown that the alternating projections
algorithm of Dykstra (1983) and Han (1988) could be applied. The same
technique has been applied in a different context in Chu, Funderlic & Plem-

7

mons (2003), Glunt, Hayden, Hong & Wells (1990), Hayden & Wells (1988)
and Suffridge & Hayden (1993). The alternating projections algorithm could
in principle be extended to the case with rank restrictions, since we can effi-
ciently calculate the projection onto the set of rank-d matrices. Convergence
of the algorithm is however no longer guaranteed by the general results of
Dykstra (1983) and Han (1988) because the constraint set {rank(C) ≤ d}
is no longer convex for d < n. Some preliminary experimentation showed
indeed that the extension to the non-convex case did not work generally.
Higham (2002, Section 5, ‘Concluding remarks’) mentions that he has been
investigating alternative algorithms, such as to include rank constraints.

Since the case d < n is the primary interest of this paper, the alternating
projections method will not be considered in the remainder. Throughout
this article we choose the starting point of any method considered (beyond
modified PCA) to be the modified PCA solution.

3 Majorization

In this section, we briefly describe the idea of majorization and apply ma-
jorization to the objective function f of Problem (3). The idea of majoriza-
tion has been described, amongst others, in De Leeuw & Heiser (1977), Kiers
& Groenen (1996) and Kiers (2002). We follow here the lines of Borg & Groe-
nen (1997, Section 8.4). The key to majorization is to find a simpler function
that has the same function value at a supporting point y and anywhere else
is larger than or equal to the objective function to be minimized. Such a
function is called a majorization function. By minimizing the majorization
function – which is an easier task since this function is ‘simpler’ – we obtain
the next point of the algorithm. This procedure guarantees that the function
value never increases along points generated by the algorithm. Moreover, if
the objective and majorization functions are once continuously differentiable
(which turns out to hold in our case), then the properties above imply that
the gradients should match at the supporting point y. As a consequence,
from any point where the gradient of the objective function is non-negligible,
iterative majorization will be able to find a next point with a strictly smaller
objective function value. This generic fact for majorization algorithms has
been pointed out in Heiser (1995).

We formalize the procedure somewhat more. Let f(·) denote the function
to be minimized. Let for each y in the domain of f be given a majorization
function g(·,y) such that

(i) f(x) = g(x,x),

8

x0x1x2

f(.)

g(.,x0)
g(.,x1)

f(x0)=g(x0,x0)

g(x1,x0)

f(x1)=g(x1,x1)

g(x2,x1)

f(x2)

Figure 1: The idea of majorization. (Figure adopted from Borg & Groenen
(1997, Figure 8.4).) The algorithm sets out at x0. The majorization function
g(·,x0) is fitted by matching the value and first derivative of f(·) at x0.
Subsequently the function g(·,x0) is minimized to find the next point x1.
This procedure is repeated to find the point x2 etc.

(ii) f(x) ≤ g(x,y) for all x, and

(iii) the function g(·,y) is ‘simple’, that is, it is straightforward to calculate
the minimum of g(·,y).

A majorization algorithm is then given by

(i) Start at x(0). Set k := 0.

(ii) Set x(k+1) equal to the minimum argument of the function g(·,x(k)).

(iii) If f(x(k))− f(x(k+1)) < ε then stop with x := x(k+1).

(iv) Set k := k + 1 and repeat from (ii).

Figure 1 illustrates the majorization algorithm.
Below we derive the majorizing function for f(·) in (3). The first step is

to majorize f(X) as a function of the ith row only and then to repeat this

9

for each row. To formalize the notion of ‘f(X) as a function of the ith row
only’ we introduce the notation fi(x;X) to denote the function

fi(·,X) : x 7→ f(X̂i(x)),

for (column)vectors x ∈ Rd with X̂i(x) denoting the matrix X with the ith

row replaced by xT . Note that we interpret X as [x1 · · ·xn]T . We find

f(X) =
1

c

∑
j1<j2

wj1j2

(
rj1j2 − 〈xj1 ,xj2〉

)2

=
1

c

∑
j1<j2

wj1j2

(
r2
j1j2

+ (xT
j1
xj2)

2 − 2rj1j2x
T
j1
xj2

)

= (const in xi) +
1

c

{
xT

i

[∑

j:j 6=i

wijxjx
T
j

]
xi

︸ ︷︷ ︸
(I)

− 2xT
i

[∑

j:j 6=i

wijrijxj

]

︸ ︷︷ ︸
(II)

}
.(6)

Part (I) is quadratic in xi whereas part (II) is linear in xi; the remaining
term is constant in xi. We only have to majorize part (I), as follows. Define

(7) Bi(X) :=
∑

j:j 6=i

wijxjx
T
j .

For notational convenience, we shall denote Bi(X) by B, the running xi by
x, and the current xi, that is, the current ith row vector of X, is denoted
by y. Let λ denote the largest eigenvalue of B. Then, the matrix B− λI is
negative semidefinite, so that the following inequality holds:

(x− y)T (B− λI)(x− y) ≤ 0, ∀x,

which gives after some manipulations

(8) xTBx ≤ 2λ− 2xT (λy −By)− yTBy, ∀x,

using the fact that xTx = yTy = 1.
Combining (6) and (8) we obtain the majorizing function of fi(x;X), that

is,

fi(x;X) ≤ −2

c
xT

(
λy −By +

∑

j:i 6=j

wijrijxj

)
+ (const in x) = gi(x;X), ∀x.

The advantage of gi(·;X) over fi(·,X) is that it is linear in x and that the
minimization problem

(9) min
{

gi(x;X) ; ‖x‖2 = 1
}

10

is readily solved by

x∗ := z/‖z‖2, z := λy −By +
∑

j:j 6=i

wijrijxj.

If z = 0 then this implies that the gradient is zero, from which it would
follow that the current point y is already a stationary point.

4 The Algorithm and Convergence Analysis

Majorization algorithms are known to converge to a point with negligible
gradient. This property holds also for the current situation, as will be shown
hereafter. As the convergence criterion is defined in terms of the gradient
∇f , an expression for ∇f is needed. We restrict to the case of all wij equal.
As shown in Grubǐsić & Pietersz (2004), the gradient is then given by

(10) ∇f = 4c−1ΨX, Ψ := XXT −R.

An expression for the gradient for the objective function with general weights
can be found by straightforward differentiation. The majorization algorithm
has been displayed in Algorithm 1.

The row-wise approach of Algorithm 1 makes it dependent of the order
of looping through the rows. This order effect will be addressed in Section
5.3. In Sections 5.4 and 5.5 we study different ways of implementing the cal-
culation of the largest eigenvalue of B in line 6 of Algorithm 1. In particular,
we study the use of the power method.

In the remainder of this section the convergence of Algorithm 1 is stud-
ied. First, we establish global convergence of the algorithm. Second, we
investigate the local rate of convergence.

4.1 Global Convergence

Zangwill (1969) developed generic sufficient conditions that guarantee conver-
gence of an iterative algorithm. The result is repeated here in a form adapted
to the case of majorization. Let M be a compact set. Assume the specifica-
tion of a subset S ⊂ M called the solution set. A point Y ∈ S is deemed a
solution. An (autonomous) iterative algorithm is a map A : M → M∪{stop}
such that A−1({stop}) = S. The proof of the following theorem is adapted
from the proof of Theorem 1 in Zangwill (1969).

Theorem 1 (Global convergence) Consider finding a local minimum of the
objective function f(X) by use of Algorithm 1. Suppose given a fixed tolerance

11

Algorithm 1 The majorization algorithm for finding a low-rank correlation
matrix locally nearest to a given matrix. Here R denotes the input matrix,
W denotes the weight matrix, n denotes its dimension, d denotes the desired
rank, ε‖∇f‖ is the convergence criterion for the norm of the gradient and εf

is the convergence criterion on the improvement in the function value.

Input: R, W, n, d, ε‖∇f‖, εf .

1: Find starting point X by means of the modified PCA method (4)–(5).
2: for k = 0, 1, 2, ... do
3: stop if the norm of the gradient of f at X(k) := X is less than ε‖∇f‖

and the improvement in the function value fk−1/fk− 1 is less than εf .
4: for i = 1, 2, ..., n do
5: Set B :=

∑
j 6=i wijxjx

T
j .

6: Calculate λ to be the largest eigenvalue of the d× d matrix B.
7: Set z := λxi −Bxi +

∑
j 6=i wijrijxj.

8: If z 6= 0, then set the ith row xi of X equal to z/‖z‖2.
9: end for

10: end for

Output: the n× n matrix XXT is the rank-d approximation of R satisfying
the convergence constraints.

level ε on the gradient of f . A point X is called a solution if ‖∇f(X)‖ < ε.
Then from any starting point X(0), the algorithm either stops at a solution
or produces an infinite sequence of points none of which are solutions, for
which the limit of any convergent subsequence is a solution point.

Proof: Without loss of generality we may assume that the procedure gen-
erates an infinite sequence of points {X(k)} none of which are solutions. It
remains to be proven that the limit of any convergent subsequence must be
a solution.

First, note that the algorithm A(·) is continuous in X. Second, note that
if X(k) is not a solution then

f(X(k+1)) = f(A(X(k))) < f(X(k)).

Namely if X(k) is not a solution then its gradient is non-negligible. Since
the objective and all majorization functions are differentiable, we necessar-
ily have that the gradients agree at X(k). Therefore, when minimizing the
majorization functions gi(·,X) there will be at least one i for which we find
a strictly smaller objective value. Thus X(k+1) := A(X(k)) has a strictly
smaller objective function value than X(k). Third, note that the sequence

12

{f(X(k))}∞k=0 has a limit since it is monotonically decreasing and bounded
from below by 0.

Let {X(kj)}∞j=1 be any subsequence that converges to X∗, say. It must
be shown that X∗ is a solution. Assume the contrary. By continuity of the
iterative procedure, A(X(kj)) → A(X∗). By the continuity of f(·), we then
have

f(A(X(kj)))
y f(A(X∗)) < f(X∗),

which is in contradiction with f(A(X(kj))) → f(X∗). 2

The algorithm thus converges to a point with vanishing first derivative. We
expect such a point to be a local minimum, but, in principle, it may also be a
stationary point. In practice, however, we almost always obtain a local min-
imum, except for very rare degenerate cases. Moreover, global convergence
to a point with zero first derivative is the best one may expect from generic
optimization algorithms. For example, the globally convergent version of the
Newton-Rhapson algorithm may converge to a stationary point, too: Ap-
plied to the function f(x, y) = x2 − y2, it will converge to the stationary
point (0, 0) starting from any point on the line {y = 0}.

4.2 Local Rate of Convergence

The local rate of convergence determines the speed at which an algorithm
converges to a solution point in a neighbourhood thereof. Let {X(k)} be a
sequence of points produced by an algorithm converging to a solution point
X(∞). Suppose, for k large enough,

(11) ‖X(k+1) −X(∞)‖ ≤ α‖X(k) −X(∞)‖ζ .

If ζ = 1 and α < 1 or if ζ = 2 the local convergence is called linear or
quadratic, respectively. If the convergence estimate is worse than linear, the
convergence is deemed sub-linear. For linear convergence, α is called the
linear rate of convergence.

When considering several algorithms and indefinite iteration, eventually
the algorithm with best rate of convergence will provide the best result.
Among the algorithms available in the literature, both the geometric pro-
gramming and parametrization approach can have a quadratic rate of con-
vergence given that a Newton-Rhapson type algorithm is applied. As the
proposition below will show, Algorithm 1 has a sub-linear local rate of con-
vergence, that is, worse than a linear rate of convergence. Thus the ma-
jorization algorithm makes no contribution to existing literature for the case
of indefinite iteration. However, we did not introduce the majorization al-
gorithm for the purpose of indefinite iteration, but rather for calculating a

13

reasonable answer in limited time, as is the case in practical applications
of financial institutions. Given a fixed amount of time, the performance of
an algorithm is a trade-off between rate of convergence and computational
cost per iterate. Such performance can almost invariably only be measured
by empirical investigation, and the results of the next section on numerical
experiments indeed show that majorization is the best performing algorithm
in a number of financial settings. The strength of majorization lies in the
low costs of calculating the next iterate.

The next proposition establishes the local sub-linear rate of convergence.

Proposition 1 (Local rate of convergence) Algorithm 1 has locally a sub-
linear rate of convergence. More specifically, let {X(k)} denote the sequence
of points generated by Algorithm 1 converging to the point X(∞). Define
δ(k,i) = ‖x(k)

i − x
(∞)
i ‖. Then

(12) δ(k+1,i) = δ(k,i) +O(
(δ(k,i))2

)
.

Proof: The proof of Equation (12) may be found in Appendix A. Equation
(12) can be written as δ(k+1,i) = α(δ(k,i))δ(k,i) with α(δ(k,i)) → 1 as k →∞. It
follows that the convergence-type defining Equation (11) holds, for Algorithm
1, with ζ = 1, but for α = 1 and not for any α < 1. We may conclude that
the local convergence is worse than linear, thus sub-linear. 2

5 Numerical Results

In this section, we study and assess the performance of the majorization
algorithm in practice. First, we numerically compare majorization with other
methods in the literature. Second, we present an example with non-constant
weights. Third, we explain and investigate the order effect. Fourth and fifth,
we consider and study alternative versions of the majorization algorithm.

Algorithm 1 has been implemented in a MATLAB package called major.
It can be downloaded from www.few.eur.nl/few/people/pietersz. The
package consists of the following files: clamp.m, dF.m, F.m, grad.m, guess.m,
major.m, P tangent.m and svdplus.m. The package can be run by calling
[Xn,Fn]=major(R,d,ftol,gradtol). Here R denotes the input correlation
matrix, d the desired rank, Xn the final configuration matrix, Fn denotes
the final objective function value, ftol the convergence tolerance on the
improvement of f , and gradtol the convergence tolerance on the norm of
the gradient. The aforementioned web-page also contains a package majorw

that implements non-constant weights for the objective function f .

14

5.1 Numerical Comparison with Other Methods

The numerical performance of the majorization algorithm was compared to
the performance of the Lagrange multiplier method, geometric programming4

and the parametrization method. Additionally, we considered the function
fmincon available in the MATLAB optimization toolbox. MATLAB refers
to this function as a ‘medium-scale constrained nonlinear program’.

We have chosen to benchmark the algorithms by their practical impor-
tance, that is the performance under a fixed small amount of computational
time. In financial applications, rank reduction algorithms are usually run for
a very short time, typically 0.05 to 2 seconds, depending on the size of the
correlation matrix. We investigate which method produces, in this limited
amount of time, the best fit to the original matrix.

The five algorithms were tested on random ‘interest rate’ correlation ma-
trices that are generated as follows. A parametric form for correlation matri-
ces is posed in De Jong, Driessen & Pelsser (2004, Equation (8)). We repeat
here the parametric form for completeness, that is,

(13) rij = exp
{
− γ1|ti − tj| − γ2|ti − tj|

max(ti, tj)γ3
− γ4

∣∣√ti −
√

tj
∣∣
}

,

with γ1, γ2, γ4 > 0 and with ti denoting the expiry time of rate i. (Our
particular choice is ti = i, i = 1, 2, . . .) This model was then subsequently
estimated with USD historical interest rate data. In Table 3 of De Jong et
al. (2004), the estimated γ parameters are listed, along with their standard
errors. An excerpt of this table has been displayed in Table 1. The random
financial matrix that we used is obtained by randomizing the γ-parameters
in (13). We assumed the γ-parameters distributed normally with mean and
standard errors given by Table 1, with γ1, γ2, γ4 capped at zero.

Hundred matrices were randomly generated, with n, d, and the compu-
tational time t varied as (n = 10, d = 2, t = 0.05s), (n = 20, d = 4, t = 0.1s)
and (n = 80, d = 20, t = 2s). Subsequently the five algorithms were ap-
plied each with t seconds of computational time and the computational time
constraint was the only stopping criterion. The results have been presented
in the form of performance profiles, as described in Dolan & Moré (2002).
The reader is referred there for the merits of using performance profiles.
These profiles are an elegant way of presenting performance data across sev-
eral algorithms, allowing for insight into the results. We briefly describe the
workings here. We have 100 test correlation matrices p = 1, . . . , 100 and 5

4For geometric programming we used the MATLAB package LRCM MIN downloadable
from www.few.eur.nl/few/people/pietersz. The Riemannian Newton-algorithm was
applied.

15

Table 1: Excerpt of Table 3 in De Jong et al. (2002).

γ1 γ2 γ3 γ4

estimate 0.000 0.480 1.511 0.186
standard error - 0.099 0.289 0.127

algorithms s = 1, . . . , 5. The outcome of algorithm s on problem p is denoted
by X(p,s). The performance measure of algorithm s is defined to be f(X(p,s)).
The performance ratio ρ(p,s) is

ρ(p,s) =
f(X(p,s))

mins

{
f(X(p,s))

} .

The cumulative distribution function Φ(s) of the (‘random’) performance ratio
p 7→ ρ(p,s) is then called the performance profile,

Φ(s)(τ) =
1

100
#

{
ρ(p,s) ≤ τ ; p = 1, . . . , 100

}
.

The profiles have been displayed in Figures 2, 3 and 4. From the performance
profiles we may deduce that majorization is the best overall performing al-
gorithm in the numerical cases studied.

The tests were also run with a strict convergence criterion on the norm of
the gradient. Because the Lagrange multiplier algorithm has not been guar-
anteed to converge to a local minimum, we deem an algorithm not to have
converged after 30 seconds of CPU time. The majorization algorithm still
performs very well, but geometric programming and the Lagrange multiplier
method perform slightly better when running up to convergence. This can
be expected from the sub-linear rate of convergence of majorization versus
the quadratic rate of convergence of the geometric programming approach.
The results have not been displayed since these are not relevant in a finance
setting. In financial practice, no additional computational time will be in-
vested to obtain convergence up to machine precision. Having found that
majorization is the most efficient algorithm in a finance setting for the nu-
merical cases considered, with the tests of running to convergence we do warn
the reader for using Algorithm 1 in applications outside of finance where con-
vergence to machine precision is required. For such non-finance applications,
we would suggest a mixed approach: use majorization in an initial stage and
finish with geometric programming. It is the low cost per iterate that makes
majorization so attractive in a finance setting.

16

0

10

20

30

40

50

60

70

80

90

100

1 1.02 1.04 1.06 1.08 1.1

Performance ratio

P
er

ce
n

ta
g

e
o

f
at

ta
in

ed
 p

er
fo

rm
an

ce
 r

at
io

Lagrange

Newton

major

param

fmincon

fmincon

Lagrange
param

major

Newton(

�)

(�)

Figure 2: Performance profile for n = 10, d = 2, t = 0.05s.

To assess the quality of the solutions found in Figures 2–4, we checked
whether the matrices produced by the algorithms were converging to a global
minimum. Here, we have the special case (only for equal weights) that we can
check for a global minimum, although in other minimization problems it may
be difficult to assess whether a minimum is global or not. For clarity, we point
out that the majorization algorithm does not have guaranteed convergence to
the global minimum, nor do any of the other algorithms described in Section
2. We only have guaranteed convergence to a point with vanishing first
derivative, and in such a point we can verify whether that point is a global
minimum. If a produced solution satisfies a strict convergence criterion on
the norm of the gradient, then it was checked whether such stationary point
is a global minimum by inspecting the Lagrange multipliers, see Zhang & Wu
(2003), Wu (2003) and Grubǐsić & Pietersz (2004, Lemma 12). The reader
is referred there for details but we briefly describe the basic result here.
Suppose X is a stationary point, that is, with negligible gradient. Define the
Lagrange multipliers Γ by the diagonal matrix Γ = diag(ΨXXT), with Ψ as
in (10). Then Grubǐsić & Pietersz (2004, Lemma 12) show that XXT and

17

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2 2.2

Performance ratio

P
er

ce
n

ta
g

e
o

f
at

ta
in

ed
 p

er
fo

rm
an

ce
 r

at
io

Lagrange

Newton

major

param

fmincon

fmincon

Lagrange

param

major

Newton(

�)

(�)

Figure 3: Performance profile for n = 20, d = 4, t = 0.1s.

R + Γ have a joint eigenvalue decomposition

R + Γ = QΛQT , XXT = QΛ∗QT ,

where Λ∗ can be obtained by selecting at most d nonnegative entries from
Λ. Here if an entry is selected it retains the corresponding position in the
matrix. If now Λ∗ contains the largest d nonnegative entries from Λ then X
is not only a stationary point, but also a global minimizer of problem (3).
We reiterate that this result holds only for the case of equal weights.

The percentage of matrices that were deemed global minima was between
95% and 100% for both geometric programming and majorization, respec-
tively, for the cases n = 20, d = 4 and n = 10, d = 2. The Lagrange multiplier
and parametrization methods did not produce any stationary points within
20 seconds of computational time. The percentage of global minima is high
since the eigenvalues of financial correlation matrices are rapidly decreasing.
In effect, there are large differences between the first 4 or 5 consecutive eigen-
values. For the case n = 80, d = 20 it was more difficult to check the global
minimum criterion since subsequent eigenvalues are smaller and closer to
each other. In contrast, if we apply the methods for all cases to random cor-
relation matrices of Davies & Higham (2000), for which the eigenvalues are

18

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2 2.2

Performance ratio

P
er

ce
n

ta
g

e
o

f
at

ta
in

ed
 p

er
fo

rm
an

ce
 r

at
io

Lagrange

Newton

major

param

fmincon

fmincon

Lagrange

param

major

Newton

(

�)

(�)

Figure 4: Performance profile for n = 80, d = 20, t = 2s.

all very similar, we find that a much lower percentage of produced stationary
points were global minima.

5.2 Non-Constant Weights

We considered the example with non-constant weights described in Rebonato
(2002, Section 9.3), in which a functional form for the correlation matrix is
specified, that is,

rij = LongCorr + (1− LongCorr) exp
{ − β|ti − tj|

}
, i, j = 1, . . . , n.

The parameters are set to n = 10, LongCorr = 0.6, β = 0.1, ti = i. Sub-
sequently Rebonato presents the rank 2, 3, and 4 matrices found by the
parametrization method for the case of equal weights. The majorization al-
gorithm was also applied and its convergence criterion was set to machine
precision for the norm of the gradient. Comparative results for the parametri-
zation and majorization algorithms have been displayed in Table 2. Columns
I and II denote ‖RApprox

Reb −RApprox
major ‖F and ‖RApprox

major, rounded−RApprox
major ‖F , respec-

tively. Here ‘Approx’ stands for the rank-reduced matrix produced by the
algorithm and ‘rounded’ stands for rounding the matrix after 6 digits, as is

19

Table 2: Comparative results of the parametrization and majorization algo-
rithms for the example described in Rebonato (2002, Section 9.3.1).

d ‖∇f‖F f f I II CPU
major. major. Rebonato major.

2 2×10−17 5.131×10−04 5.137×10−04 41×10−04 0.02×10−04 0.4s
3 2×10−17 1.26307×10−04 1.26311×10−04 15×10−04 0.01×10−04 1.0s
4 2×10−17 4.85×10−05 4.86×10−05 70×10−04 0.01×10−04 2.1s

the precision displayed in Rebonato (2002). Columns I and II show that
the matrices displayed in Rebonato (2002) are not yet fully converged up to
machine precision, since the round-off error from displaying only 6 digits is
much smaller than the error in obtaining full convergence to the stationary
point.

Rebonato proceeds by minimizing f for rank 3 with two different weights
matrices. These weights matrices are chosen by financial arguments specific
to a ratchet cap and a trigger swap, which are interest rate derivatives. The
weights matrix W(R) for the ratchet cap is a tridiagonal matrix

w
(R)
ij = 1 if j = i− 1, i, i + 1, w

(R)
ij = 0, otherwise

and the weights matrix W(T) for the trigger swap has ones on the first two
rows and columns

w
(T)
ij = 1 if i = 1, 2 or j = 1, 2, w

(T)
ij = 0, otherwise.

Rebonato subsequently presents the solution matrices found by the parame-
trization method. These solutions exhibit a highly accurate yet non-perfect
fit to the relevant portions of the correlation matrices. In contrast, majoriza-
tion finds exact fits. The results have been displayed in Table 3.

5.3 The Order Effect

The majorization algorithm is based on sequentially looping over the rows
of the matrix X. In Algorithm 1, the row index runs from 1 to n. There
is however no distinct reason to start with row 1, then 2, etc. It would be
equally reasonable to consider any permutation p of the numbers {1, . . . , n}
and then let the row index run as p(1), p(2), . . . , p(n). A priori, there is noth-
ing to guarantee or prevent that the resulting solution point produced with

20

Table 3: Results for the ratchet cap and trigger swap. Here ‘tar.’ denotes
the target value, ‘maj.’ and ‘Reb.’ denote the resulting value obtained by
the majorization algorithm and Rebonato (2002, Section 9.3), respectively.

Ratchet cap
First principal sub-diagonal; CPU time major: 2.8s; obtained f < 2× 10−30

tar. .961935 .961935 .961935 .961935 .961935 .961935 .961935 .961935 .961935
maj. .961935 .961935 .961935 .961935 .961935 .961935 .961935 .961935 .961935
Reb. .961928 .961880 .961977 .962015 .962044 .962098 .961961 .961867 .962074

Trigger swap
First two rows (or equivalently first two columns); CPU time major: 2.4s; obtained f < 2× 10−30

Row 1 (without the unit entry (1,1))
tar. .961935 .927492 .896327 .868128 .842612 .819525 .798634 .779732 .762628
maj. .961935 .927492 .896327 .868128 .842612 .819525 .798634 .779732 .762628
Reb. .961944 .927513 .896355 .868097 .842637 .819532 .798549 .779730 .762638

Row 2 (without the unit entry (2,2))
tar. .961935 .961935 .927492 .896327 .868128 .842612 .819525 .798634 .779732
maj. .961935 .961935 .927492 .896327 .868128 .842612 .819525 .798634 .779732
Reb. .961944 .962004 .927565 .896285 .868147 .842650 .819534 .798669 .779705

permutation p would differ from or be equal to the solution point produced
by the default loop 1, . . . , n. This dependency of the order is termed ‘the
order effect’. The order effect is a bad feature of Algorithm 1 in general.
We show empirically that the solutions produced by the algorithm can differ
when using a different permutation. However, we show that this is unlikely to
happen for financial correlation matrices. The order effect can have two con-
sequences. First, the produced solution correlation matrix can differ – this
generally implies a different objective function value as well. Second, even
when the produced solution correlation matrix is equal, the configuration X
can differ – in this case we have equal objective function values. To see this,
consider a n× d configuration matrix X and assume given any orthonormal
d × d matrix Q, that is, QQT = I. Then the configuration matrices X and
XQ are associated with the same correlation matrices5: XQQTX = XXT .

We investigated the order effect for Algorithm 1 numerically, as follows.
We generated either a random matrix by (13), see Section 5.1, or a random

5The indeterminacy of the result produced by the algorithm can easily be resolved by
either considering only XXT or by rotation of X into its principal axes. For the latter, let
XT X = QΛQT be an eigenvalue decomposition. Then the principal axes representation
is given by XQ.

21

Table 4: The order effect. Here n = 30, d = 2 and 100 random permu-
tations were applied. Four types of produced correlation matrices could be
distinguished. The table displays the associated f and frequency.

type I II III IV

f 0.110423 0.110465 0.110630 0.110730
frequency 2% 88% 7% 3%

correlation matrix in MATLAB by

rand(’state’,0);randn(’state’,0);n=30;R=gallery(’randcorr’,n);

The random correlation matrix generator gallery(’randcorr’,n) has been
described in Davies & Higham (2000). Subsequently we generated 100 ran-
dom permutations with p=randperm(n);. For each of the permutations,
Algorithm 1 was applied with d = 2 and a high accuracy was demanded:
ε‖∇f‖ = εf = 10−16. The results for the two different correlation matrices are
as follows.

(Random interest rate correlation matrix as in (13).) Only one type of
produced solution correlation matrix could be distinguished, which turned
out to be a global minimum by inspection of the Lagrange multipliers. We
also investigated the orthonormal transformation effect. For R2, an orthonor-
mal transformation can be characterized by the rotation of the two basis
vectors and then by -1 or +1 denoting whether the second basis vector is
reflected in the origin or not. All produced matrices X were differently ro-
tated, but no reflection occurred. The maximum rotation was equal to 0.8
degrees and the standard deviation of the rotation was 0.2 degrees.

(Davies & Higham (2000) random correlation matrix.) Essentially four
types of produced solution correlation matrices could be distinguished, which
we shall name I, II, III, and IV. The associated objective function values and
the frequency at which the types occurred have been displayed in Table 4.
We inspected the Lagrange multipliers to find that none of the four types
was a global minimum. For type II, the most frequently produced low-
rank correlation matrix, we also investigated the orthonormal transformation
effect. Out of the 88 produced matrices X that could be identified with type
II, all were differently rotated, but no reflection occurred. The maximum
rotation was equal to 38 degrees and the standard deviation of the rotation
was 7 degrees.

22

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 5 10 15 20

Computational time (s)

L
N

(
re

la
ti

v
e
 r

e
s
id

u
a
l
)

major power

major

Figure 5: Convergence run for the use of the power method versus
lambda=max(eig(B)). The relative residual is ‖∇f(X(i))‖F /‖∇f(X(0))‖F .
Here n = 80 and d = 3.

From the results above, we conclude that the order effect is not much of
an issue for the case of interest rate correlation matrices, at least not for the
numerical setting that we investigated.

5.4 Majorization Equipped with the Power Method

Line 6 in Algorithm 1 uses the largest eigenvalue of a matrix, which can be
implemented in several different ways. For example, our implementation in
the MATLAB function major implements lambda=max(eig(B)), which uses
available MATLAB built-in functions. This choice of implementation unnec-
essarily calculates all eigenvalues whereas only the largest is required. In-
stead, the algorithm can be accelerated by calculating only the largest eigen-
value, for example with the power method, see Golub & Van Loan (1996). We
numerically tested the use of the power method versus lambda=max(eig(B)),
as follows. In Figure 5, we have displayed the natural logarithm of the rela-
tive residual versus the computational time for the random Davies & Higham
(2000) matrix R included in the major package, for both the power method
and lambda=max(eig(B)). As can be seen from the figure, the power method
causes a significant gain of computational efficiency. The power method is
available as majorpower at www.few.eur.nl/few/people/pietersz.

23

5.5 Using an Estimate for the Largest Eigenvalue

In Algorithm 1, the largest eigenvalue of B is calculated by an eigenvalue
decomposition or by the power method. Such methods may be relatively
expensive to apply. Instead of a full calculation, we could consider finding
an easy-to-calculate upper bound on the largest eigenvalue of B. Such upper
bound is readily determined as n − 1 due to the unit length restrictions on
the n− 1 vectors xi. Replacing λ and its calculation by n− 1 in Algorithm
1 will result in a reduction of computational time by not having to calculate
the eigenvalue decomposition. A disadvantage is however that the resulting
fitted majorizing function might be much steeper causing its minimum to be
much closer to the point of outset. In other words, the steps taken by the
majorization algorithm will be smaller. Whether to use n− 1 instead of λ is
thus a trade-off between computational time for the decomposition and the
step-size.

We tested replacing λ by n − 1 for 100 correlation matrices of dimen-
sion 80 × 80. These matrices were randomly generated with the procedure
of Davies & Higham (2000). We allowed both versions of the algorithm a
computational time of less than 1 second. We investigated d = 3, d = 6,
d = 40 and d = 70. For all 400 cases, without a single exception, the ver-
sion of the algorithm with the full calculation of λ produced a matrix that
had a lower value f than the version with n − 1. This result suggests that
a complete calculation of the largest eigenvalue is most efficient. However,
these results could be particular to our numerical setting. The ‘n−1’ version
of the algorithm remains an interesting alternative and could potentially be
beneficial in certain experimental setups.

6 Conclusions

We have developed a novel algorithm for finding a low-rank correlation ma-
trix locally nearest to a given matrix. The algorithm is based on iterative
majorization and this paper is the first to apply majorization to the area of
derivatives pricing. We showed theoretically that the algorithm converges to
a stationary point from any starting point. As an addition to the previously
available methods in the literature, majorization was in our simulation setup
more efficient than either geometric programming, the Lagrange multiplier
technique or the parametrization method. Furthermore, majorization is eas-
ier to implement than any method other than modified PCA. The majoriza-
tion method efficiently and straightforwardly allows for arbitrary weights.

24

References

Borg, I. & Groenen, P. J. F. (1997), Modern Multidimensional Scaling,
Springer-Verlag, Berlin.

Brace, A., Ga̧tarek, D. & Musiela, M. (1997), ‘The market model of interest
rate dynamics’, Mathematical Finance 7(2), 127–155.

Brigo, D. (2002), A note on correlation and rank reduction, Downloadable
from www.damianobrigo.it.

Chu, M. T., Funderlic, R. E. & Plemmons, R. J. (2003), ‘Structured low rank
approximation’, Linear Algebra and its Applications 366, 157–172.

Davies, P. I. & Higham, N. J. (2000), ‘Numerically stable generation of cor-
relation matrices and their factors’, BIT 40(4), 640–651.

De Jong, F., Driessen, J. & Pelsser, A. A. J. (2004), ‘On the information in
the interest rate term structure and option prices’, Review of Derivatives
Research 7(2), 99–127.

De Leeuw, J. & Heiser, W. (1977), Convergence of correction-matrix algo-
rithms for multidimensional scaling, in J. C. Lingoes, E. E. Roskam &
I. Borg, eds, ‘Geometric representations of relational data’, Mathesis
Press, Ann Arbor, MI, pp. 735–752.

Dolan, E. D. & Moré, J. J. (2002), ‘Benchmarking optimization software with
performance profiles’, Mathematical Programming, Series A 91(2), 201–
213.

Dykstra, R. L. (1983), ‘An algorithm for restricted least squares regression’,
Journal of the American Statistical Association 87(384), 837–842.

Flury, B. (1988), Common Principal Components and Related Multivariate
Models, J. Wiley & Sons, New York.

Glunt, W., Hayden, T. L., Hong, S. & Wells, J. (1990), ‘An alternating pro-
jection algorithm for computing the nearest Euclidean distance matrix’,
SIAM Journal of Matrix Analysis and its Applications 11(4), 589–600.

Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, 3 edn, John
Hopkins University Press, Baltimore, MD.

25

Grubǐsić, I. & Pietersz, R. (2004), Efficient rank reduction of correlation
matrices, Working paper, Utrecht University, Utrecht, Downloadable
from www.few.eur.nl/few/people/pietersz.

Han, S.-P. (1988), ‘A succesive projection method’, Mathematical Program-
ming 40, 1–14.

Hayden, T. L. & Wells, J. (1988), ‘Approximation by matrices posi-
tive semidefinite on a subspace’, Linear Algebra and its Applications
109, 115–130.

Heiser, W. J. (1995), Convergent computation by iterative majorization:
Theory and applications in multidimensional data analysis, in W. J.
Krzanowski, ed., ‘Recent Advances in Descriptive Multivariate Analy-
sis’, Oxford University Press, Oxford, pp. 157–189.

Higham, N. J. (2002), ‘Computing the nearest correlation matrix–a problem
from finance’, IMA Journal of Numerical Analysis 22(3), 329–343.

Hull, J. C. & White, A. (2000), ‘Forward rate volatilities, swap rate volatili-
ties, and implementation of the LIBOR market model’, Journal of Fixed
Income 10(2), 46–62.

Jamshidian, F. (1997), ‘Libor and swap market models and measures’, Fi-
nance and Stochastics 1(4), 293–330.

Kiers, H. A. L. (2002), ‘Setting up alternating least squares and iterative ma-
jorization algorithms for solving various matrix optimization problems’,
Computational Statistics and Data Analysis 41(1), 157–170.

Kiers, H. A. L. & Groenen, P. J. F. (1996), ‘A monontonically convergent
algorithm for orthogonal congruence rotation’, Psychometrika 61, 375–
389.

Miltersen, K. R., Sandmann, K. & Sondermann, D. (1997), ‘Closed form
solutions for term structure derivatives with log-normal interest rates’,
Journal of Finance 52(1), 409–430.

Rapisarda, F., Mercurio, F. & Brigo, D. (2002), Parametrizing correlations:
A geometric interpretation, Banca IMI Working Paper, Downloadable
from www.fabiomercurio.it.

Rebonato, R. (1999a), ‘Calibrating the BGM model’, Risk Magazine, pp. 74–
79. March.

26

Rebonato, R. (1999b), Volatility and Correlation in the Pricing of Equity,
FX and Interest-Rate Options, J. Wiley & Sons, Chichester.

Rebonato, R. (2002), Modern Pricing of Interest-Rate Derivatives, Princeton
University Press, New Jersey.

Suffridge, T. J. & Hayden, T. L. (1993), ‘Approximation by a Hermitian
positive semidefinite Toeplitz matrix’, SIAM Journal of Matrix Analysis
and its Applications 14(3), 721–734.

Wu, L. (2003), ‘Fast at-the-money calibration of the LIBOR market model
using Lagrange multipliers’, Journal of Computational Finance 6(2), 39–
77.

Zangwill, W. I. (1969), ‘Convergence conditions for nonlinear programming
algorithms’, Management Science (Theory Series) 16(1), 1–13.

Zhang, Z. & Wu, L. (2003), ‘Optimal low-rank approximation to a correlation
matrix’, Linear Algebra and its Applications 364, 161–187.

A Proof of Equation (12)

Define the Algorithm 1 mapping x
(k+1)
i = mi(x

(k)
i ,X(k)). For ease of exposi-

tion we suppress the dependency on the row index i and current state X(k),
so x(k+1) = m(x(k)), with

m(x) =
z

‖z‖ , z = (λI−B)x + a,

where B depends on X according to (7), λ is the largest eigenvalue of B
and a =

∑
j:i6=j wijrijxj. We have locally around x(∞), by first order Taylor

approximation

x(k+1) = x(∞) + Dm(x(∞))(x(k) − x(∞)) +O(‖x(k) − x(∞)‖2
)
.

By straightforward calculation, the Jacobian matrix equals

Dm(x(∞)) =
(
I− (x(∞))(x(∞))T

) 1

‖z(∞)‖(λI−B).

27

Figure 6: The equality ‖Px(∞)(x(k) − x(∞))‖ = δ(k)
√

1− (δ(k))2/4.

The matrix I− (x(∞))(x(∞))T is denoted by Px(∞) . Then, up to first order in
δ(k) = ‖x(k) − x(∞)‖,

x(k+1) − x(∞) ≈ Px(∞)

1

‖z(∞)‖(λI−B)(x(k) − x(∞))

= Px(∞)

1

‖z(∞)‖
(

(λI−B)x(k) + a− (
(λI−B)x(∞) + a

))

= Px(∞)

1

‖z(∞)‖
(
z(k) − z(∞)

)

=
‖z(k)‖
‖z(∞)‖Px(∞)

(
x(k) − x(∞)

)
,(14)

where in the last equality we have used Px(∞)x(∞) = 0. Note that, up to
first order in δ(k), ‖z(k)‖/‖z(∞)‖ ≈ 1. The term ‖Px(∞)(x(k) − x(∞))‖ can be
calculated by elementary geometry, see Figure 6. The projection operator
Px(∞) sets any component in the direction of x(∞) to zero and leaves any
orthogonal component unaltered. The resulting length ‖Px(∞)(x(k) − x(∞))‖
has been illustrated in Figure 6. If we denote this length by µ, then µ =
sin(θ), where θ is the angle as denoted in the figure. Also sin(θ/2) = δ(k)/2
from which we obtain θ = 2 arcsin(δ(k)/2). It follows that

µ = sin
(

2 arcsin(δ(k)/2)
)

= 2 sin
(

arcsin(δ(k)/2)
)
cos

(
arcsin(δ(k)/2)

)

= 2
(δ(k)

2

)√
1−

(δ(k)

2

)2

= δ(k)
√

1− (δ(k))2/4 = δ(k) +O(
(δ(k))2

)
(15)

28

The result δ(k+1) = δ(k) +O((δ(k))2) follows by combining (14) and (15). 2

29

