196 research outputs found

    Self-Focused and Other-Focused Health Concerns as Predictors of the Uptake of Corona Contact Tracing Apps: Empirical Study

    Get PDF
    Background Corona contact tracing apps are a novel and promising measure to reduce the spread of COVID-19. They can help to balance the need to maintain normal life and economic activities as much as possible while still avoiding exponentially growing case numbers. However, a majority of citizens need to be willing to install such an app for it to be effective. Hence, knowledge about drivers for app uptake is crucial. Objective This study aimed to add to our understanding of underlying psychological factors motivating app uptake. More specifically, we investigated the role of concern for one’s own health and concern to unknowingly infect others. Methods A two-wave survey with 346 German-speaking participants from Switzerland and Germany was conducted. We measured the uptake of two decentralized contact tracing apps officially launched by governments (Corona-Warn-App, Germany; SwissCovid, Switzerland), as well as concerns regarding COVID-19 and control variables. Results Controlling for demographic variables and general attitudes toward the government and the pandemic, logistic regression analysis showed a significant effect of self-focused concerns (odds ratio [OR] 1.64, P=.002). Meanwhile, concern of unknowingly infecting others did not contribute significantly to the prediction of app uptake over and above concern for one’s own health (OR 1.01, P=.92). Longitudinal analyses replicated this pattern and showed no support for the possibility that app uptake provokes changes in levels of concern. Testing for a curvilinear relationship, there was no evidence that “too much” concern leads to defensive reactions and reduces app uptake. Conclusions As one of the first studies to assess the installation of already launched corona tracing apps, this study extends our knowledge of the motivational landscape of app uptake. Based on this, practical implications for communication strategies and app design are discussed

    The applicability of disintegration tests for cohesive organic soils

    Get PDF
    The use of ripened fine-grained organic dredged materials as construction materials, e.g. as top soil on slopes such as landfills or dikes, is an important contribution to environmental engineering science. The materials are legally considered a waste and need to be beneficially re-used. Therefore, not only standard geotechnical parameter shave to be determined but also their erosion resistance which is a particularly critical environmental parameter. There is a variety of different tests to determine the flow dependent erosion resistance of soils, such as the erosion function apparatus (Briaud et al. 2001). In this study, however, the focus lays on the aggregate stability as an indicator for the erosion resistance under static loading, which can be determined using wet sieving and disintegration tests. The disintegration tests after Weißmann (2003) and Endell (RPW 2006) have a similar setup; however, the specific boundary conditions for the tests as well as the evaluation procedures are different. Weißmann proposed his test to determine the erosion stability of dike cover materials while the Endell test should be used for mineral sealing liners in navigation channels. In this study both tests have been used to evaluate the aggregate stability of fine-grained organic dredged materials that have been installed in large-scale research dike facilities and in the recultivation layers of different landfills. The materials showed good visual performance with respect to rainfall induced erosion so far; however, problems in determining erosion and aggregate stability indices limit the value of the studies: both disintegration tests investigated have major limitations with respect to the organic soils tested. Particularly the evaluation methods are not suitable for the soils but also some boundary conditions are critical and are discussed in this paper. The gained knowledge is a valuable basis for the development of standard characterisation methods for dredged materials in environmental and geotechnical applications

    An N-terminal domain helical motif of Prototype Foamy Virus Gag with dual functions essential for particle egress and viral infectivity

    Get PDF
    Background: Foamy viruses (FVs) have developed a unique budding strategy within the retrovirus family. FV release requires co-expression and a highly specific interaction between capsid (Gag) and glycoprotein (Env), which cannot be complemented by heterologous Env proteins. The interaction domain in FV Env has been mapped in greater detail and resides mainly in the N-terminal tip of the cytoplasmic domain of the Env leader peptide subunit. In contrast, the corresponding domain within Gag is less well defined. Previous investigations suggest that it is located within the N-terminal part of the protein. Results: Here we characterized additional Gag interaction determinants of the prototype FV (PFV) isolate using a combination of particle release, GST pull-down and single cycle infectivity analysis assays. Our results demonstrate that a minimal PFV Gag protein comprising the N-terminal 129 aa was released into the supernatant, whereas proteins lacking this domain failed to do so. Fine mapping of domains within the N-terminus of PFV Gag revealed that the N-terminal 10 aa of PFV Gag were dispensable for viral replication. In contrast, larger deletions or structurally deleterious point mutations in C-terminally adjacent sequences predicted to harbor a helical region abolished particle egress and Gag – Env protein interaction. Pull-down assays, using proteins of mammalian and prokaryotic origin, support the previous hypothesis of a direct interaction of both PFV proteins without requirement for cellular cofactors and suggest a potential direct contact of Env through this N-terminal Gag domain. Furthermore, analysis of point mutants within this domain in context of PFV vector particles indicates additional particle release-independent functions for this structure in viral replication by directly affecting virion infectivity. Conclusions: Thus, our results demonstrate not only a critical function of an N-terminal PFV Gag motif for the essential capsid - glycoprotein interaction required for virus budding but also point out additional functions that affect virion infectivity

    Forschungsprojekte mit der Praxis entwickeln: Ergebnisse des Projektentwicklungsprozesses der Innovationsgruppe ginkoo

    Get PDF
    Organic farming actors need to handle more complex innovation processes to develop locally adapted and globally relevant solutions for challenges such as agricultural-biodiversity and relationship between farmers and producers. For a coordinating management of such innovation processes, management tools that exceed classical innovation management techniques, are required if sustainable solutions are to be achieved. Developing relevant knowledge requires a transdisciplinary approach to bridge the gap between science and practice. This paper presents our process and the resulting concept of the transdisciplinary innovation group ginkoo for one of two case studies. It aims at developing a research concept that integrates the practical context such that ground for using the research findings after the end of funding has been laid

    Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Get PDF
    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics

    Cloning, molecular characterization and konditional inactivation of a murine death receptor for TRAIL (mTRAIL-R)

    No full text
    TRAIL/APO-2L (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand) ist ein Apoptose-induzierendes Mitglied der TNF-Superfamilie (TNF-SF). Bislang sind zwei humane TRAIL-Todesrezeptoren, TRAIL-R1 und TRAIL-R2, bekannt, die zur TNF-Rezeptor-Superfamilie gehören. TRAIL induziert Apoptose in einer Vielzahl von Tumorzelllinien, wohingegen die meisten primĂ€ren Zellen resistent gegenĂŒber TRAIL sind. In prĂ€klinischen Studien mit MĂ€usen und nichthumanen Primaten wurde keine systemische ToxizitĂ€t von TRAIL nachgewiesen. Diese Beobachtungen haben betrĂ€chtliches Interesse an dem Einsatz von TRAIL zur Tumortherapie geweckt. Über die physiologische Rolle von TRAIL ist jedoch noch wenig bekannt. Das Ziel dieser Arbeit war, Werkzeuge zum Studium des Apoptose-induzierenden TRAIL-Systems in MĂ€usen zu etablieren. ZunĂ€chst mussten das oder die murinen Homologe der beiden Apoptose-induzierenden TRAIL-Rezeptoren identifiziert werden. Dazu wurden murine TRAIL-bindende Proteine biochemisch ĂŒber 2D-Gelanalysen identifiziert. Anhand einer Sequenzinformation aus einer Datenbank wurde ein muriner TRAIL-Rezeptor kloniert, der aufgrund seines biochemisch bestimmten Molekulargewichts p54_mTRAIL-R genannt wurde. Der Sequenzvergleich sowie die Funktionsanalyse von p54_mTRAIL-R ergab, dass dieser Rezeptor das funktionelle murine Homolog zu den humanen TRAIL-Todesrezeptoren TRAIL-R1 und TRAIL-R2 ist. So war p54_mTRAIL-R ebenfalls in der Lage, nach Überexpression Caspase-abhĂ€ngig Apoptose zu induzieren. Wie die Transkripte der humanen TRAIL-Todesrezeptoren wurden die Transkripte von p54_mTRAIL-R in allen untersuchten Geweben detektiert. Es wurde ein lösliches p54_mTRAIL-R:Fc-Fusionsprotein hergestellt, welches zur TRAIL-Inaktivierung in vivo und in vitro verwendet werden kann. Um die physiologische Rolle des p54_mTRAIL-Rs in vivo studieren zu können, sollten mTRAIL-R-defiziente MĂ€use generiert werden. Zur Modifikation des fĂŒr p54_mTRAIL-R kodierenden tar-Locus wurde das Gen kloniert und charakterisiert. Um eine durch die Gendefizienz hervorgerufene eventuelle LetalitĂ€t oder sekundĂ€re kompensierende Effekte zu vermeiden, wurden mit Hilfe des Cre/loxP-Systems und des Flp/FRT-Systems konditionale p54_mTRAIL-R defiziente MĂ€use hergestellt. Die Werkzeuge, die in dieser Arbeit generiert wurden, wie lösliches p54_mTRAIL-R:Fc Fusionsprotein und konditionale p54_mTRAIL-R defiziente MĂ€use, können nun in vivo fĂŒr die Erforschung der physiologischen Rolle des TRAIL-Systems sowie seines Potentials und dessen Grenzen bei der Tumortherapie benutzt werden.TRAIL/APO-2L (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand) is an apoptosis-inducing member of the tumor necrosis factor superfamily (TNF-SF). Currently two human death receptors, namely TRAIL-R1 and TRAIL-2, belonging to the TNF receptor superfamily (TNFR-SF) are known to bind TRAIL. Interestingly, TRAIL has been shown to induce apoptosis in a variety of tumor cell lines whereas most primary cells were resistant. In addition, preclinical studies with mice and nonhuman primates have indicated that TRAIL does not induce substantial systemic toxicity. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. In order to examine the physiological function of TRAIL in vivo, the aim of this work was to establish tools to study the apoptosis-inducing TRAIL system in mice. First the murine homologue/s of the two death-inducing TRAIL receptors needed to be identified. Therefore the first aim was to biochemically identify murine TRAIL-binding proteins via 2D-gel analysis. With the help of the information from an EST sequence contained in a public database a murine TRAIL receptor was cloned, which was termed p54_mTRAIL-R due to its molecular weight as determined by biochemical analysis. Sequence comparison and functional analysis of p54_mTRAIL-R revealed that mTRAIL-R is homologous to both human TRAIL death receptors. Like its human counterparts p54_mTRAIL-R was capable of inducing apoptosis in a caspase-dependent fashion upon overexpression. As transcripts of the human TRAIL death receptors, also transcripts of p54_mTRAIL-R could be detected in all tissues examined. A soluble p54_mTRAIL-R:Fc-protein was generated, which could be used to block TRAIL-induced apoptosis in vitro and in vivo. To be able to study the physiological role of the p54_mTRAIL-R in vivo TRAIL-R deficient mice were generated. For modification of the tar-locus coding for p54_mTRAIL the gene was cloned and characterized. In order to avoid lethality or secondary complementing effects the Cre/loxP system and Flp/FRT system was used to generate conditional p54_mTRAIL-R deficient mice. The tools generated in this work as soluble p54_mTRAIL-R:Fc fusion protein and conditional p54_mTRAIL-R deficient mice can now be used in vivo to deduce the physiological role of the TRAIL system and to determine its potential and limitations for cancer therapy

    MRI Follow-up of Astrocytoma: Automated Coregistration and Color-Coding of FLAIR Sequences Improves Diagnostic Accuracy With Comparable Reading Time

    No full text
    BackgroundMRI follow‐up is widely used for longitudinal assessment of astrocytoma, yet reading can be tedious and error‐prone, in particular when changes are subtle.Purpose/HypothesisTo determine the effect of automated, color‐coded coregistration (AC) of fluid attenuated inversion recovery (FLAIR) sequences on diagnostic accuracy, certainty, and reading time compared to conventional follow‐up MRI assessment of astrocytoma patients.Study TypeRetrospective.PopulationIn all, 41 patients with neuropathologically confirmed astrocytoma.Field Strength/Sequence1.0–3.0T/FLAIRAssessmentThe presence or absence of tumor progression was determined based on FLAIR sequences, contrast‐enhanced T1 sequences, and clinical data. Three radiologists assessed 47 MRI study pairs in a conventional reading (CR) and in a second reading supported by AC after 6 weeks. Readers determined the presence/absence of tumor progression and indicated diagnostic certainty on a 5‐point Likert scale. Reading time was recorded by an independent assessor.Statistical TestsThe Wilcoxon test was used to assess reading time and diagnostic certainty. Differences in diagnostic accuracy, sensitivity, and specificity were analyzed with the McNemar mid‐p test.ResultsReaders attained significantly higher overall sensitivity (0.86 vs. 0.75; P < 0.05) and diagnostic accuracy (0.84 vs. 0.73; P < 0.05) for detection of progressive nonenhancing tumor burden when using AC compared to CR. There was a strong trend towards higher specificity within the AC‐augmented reading, yet without statistical significance (0.83 vs. 0.71; P = 0.08). Sensitivity for unequivocal disease progression was similarly high in both approaches (AC: 0.94, CR: 0.92), while for marginal disease progressions, it was significantly higher in AC (AC: 0.78, CR: 0.58; P < 0.05). Reading time including application loading time was comparable (AC: 38.1 ± 16.8 sec, CR: 36.0 ± 18.9 s; P = 0.25).Data ConclusionCompared to CR, AC improves comparison of FLAIR signal hyperintensity at MRI follow‐up of astrocytoma patients, allowing for a significantly higher diagnostic accuracy, particularly for subtle disease progression at a comparable reading time

    Post-compression of high average power picosecond pulses forfew cycle generation and FEL pump-probe experiments

    No full text
    We demonstrate post-compression of 1.2 ps pulses to the few-cycleregime via multi-pass spectral broadening. We achieve compressionfactors of 40 via single and >90 via dual stage compression employingmJ pulses. Long term stability measurements show that suchpost-compression setup can be employed for FEL pump-probe experiments
    • 

    corecore