920 research outputs found

    Superconductivity in NdFe1-xCoxAsO (0.05 < x < 0.20) and rare-earth magnetic ordering in NdCoAsO

    Get PDF
    The phase diagram of NdFe1-xCoxAsO for low cobalt substitution consists of a superconducting dome (0.05 < x < 0.20) with a maximum critical temperature of 16.5(2) K for x = 0.12. The x = 1 end member, NdCoAsO, is an itinerant ferromagnet (TC = 85 K) with an ordered moment of 0.30(1) BM at 15 K. Below TN = 9 K, Nd spin-ordering results in the antiferromagnetic coupling of the existing ferromagnetic planes. Rietveld analysis reveals that the electronically important two-fold tetrahedral angle increases from 111.4 to 115.9 deg. in this series. Underdoped samples with x = 0.046(2) and x = 0.065(2) show distortions to the orthorhombic Cmma structure at 72(2) and 64(2) K, respectively. The temperature dependences of the critical fields Hc2(T) near Tc are linear with almost identical slopes of 2.3(1) T K-1 for x = 0.065(2), x = 0.118(2) and x = 0.172(2). The estimated critical field Hc2(0) and correlation length for optimally doped samples are 26(1) T and 36(1) Angstrom. A comparison of the maximum reported critical temperatures of well-characterized cobalt doped 122- and 1111-type superconductors is presented.Comment: accepted to PR

    Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird

    Get PDF
    We thank everyone from the Centre for Ecology & Hydrology (CEH) who contributed to data collection, and Scottish Natural Heritage for access to the Isle of May National Nature Reserve. We thank the Scottish Ornithologists’ Club (SOC) for their support, and all volunteer observers, particularly Raymond Duncan, Moray Souter and Bob Swann. HG was funded by a Natural Environment Research Council (NERC) CASE studentship supported by CEH and SOC, FD, SW, MPH, MN and SB were funded by NERC and the Joint Nature Conservation Committee, and JMR was part-funded by the Royal Society. Finally, we thank the Associate Editor and two reviewers for constructive comments on the manuscript. The data are available from the Dryad Digital Repository https://doi.org/10.5061/dryad.532j0 (Grist et al., 2017)Peer reviewedPublisher PD

    Mastitis.

    Get PDF
    4p

    Complex Physical Activities, Outdoor Play, and School Readiness among Preschoolers

    Get PDF
    High quality educational settings play a crucial role in preparing a child to enter kindergarten, but little work has explored how outdoor play and complex physical activity outside school and childcare settings promote school readiness among preschoolers. To address this gap, the present study explored connections among school readiness with outdoor play and participation in complex physical activity. Parents (N = 107) reported the extent and frequency of time their child spent in outdoor play during a typical week, and what complex activities (e.g., soccer, biking, basketball) the child played over the last year. School readiness was assessed with parent reports on the Preschool Behavior and Emotional Rating Scale. Results showed participating in complex activities significantly moderated the relationship between time in outdoor play with school readiness, with time in outdoor play positively related to school readiness for children who participated in two or less complex activities. For children who participated in three complex activities, time in outdoor play was not related to school readiness. Findings offer support that encouraging both outdoor play and participation in complex physical activities could promote school readiness, particularly when opportunities for outdoor playtime are limited

    Observed and projected changes in North Atlantic seasonal temperature reduction and their drivers

    Get PDF
    The autumn-winter seasonal temperature reduction (STR) of the surface North Atlantic Ocean is investigated with control and climate change simulations of a coupled model and an observation-based sea surface temperature (SST) data set. In the climate change simulation, an increase in the magnitude of the STR is found over much of the North Atlantic, and this change is particularly marked in sea-ice affected regions and the subpolar gyre. Similar results for the mid-high latitude North Atlantic are obtained in the observational analysis. In particular, both the observation and climate model based results show that the STR has increased in magnitude by up to 0.3°C per decade in the subpolar gyre over the period 1951–2020. Drivers for the stronger STR are explored with a focus on potential contributions from increases in either ocean heat loss or the sensitivity of SST to heat loss. Over a large part of the mid-high latitude North Atlantic surface heat loss is found to have weakened in recent decades and is therefore not responsible for the stronger STR (exceptions to this are the near-coastal areas where sea-ice loss is important). In contrast, analysis of daily sensible and latent heat flux data reveals that the sensitivity of SST to heat loss has increased indicating that this term has played a major role in the stronger STR. Areas of greater SST sensitivity (and greater STR) are associated with increased surface stratification brought about predominantly by warming of the northern ocean regions

    Innovative solutions please, as long as they have been proved elsewhere:The case of a polished lime-pozzolan concrete floor

    Get PDF
    AbstractThis case-study paper tells the story of the development of a bespoke lime-pozzolan concrete for an innovative project application. In this paper, the results of laboratory testing are contextualised by the project-story that steered the research programme. This is an example of a collaborative endeavour to implement a novel low-carbon construction technology in the field.Evolution of the design in parallel with laboratory testing resulted in the development and specification of a polished lime-pozzolan concrete floor incorporating site-won oolitic limestone aggregate. To the disappointment of the client and the design team, this innovative solution was abandoned at the point the contractor was appointed and changed to a proprietary polished metallic dry shake floor system. The project, a new build extension to a local authority secondary school, was completed in September 2013

    The water mass transformation framework and variability in hurricane activity

    Get PDF
    Hurricane activity has been higher since 1995 than in the 1970s and 1980s. This rise in activity has been linked to a warming Atlantic. In this study, we consider variability of the volume of water warmer than 26.5 ºC, considered widely to be the temperature threshold crucial to hurricane development. We find the depth of the 26.5 ºC isotherm better correlated with seasonal hurricane counts than SST in the early part of the Atlantic hurricane season in some regions. The volume of water transformed by surface heat fluxes to temperatures above 26.5 ºC is directly calculated using the Water Mass Transformation framework. This volume is compared with the year-to-year changes in the volume of water of this temperature to see how much of the volume can be explained using this calculation. In some years, there is notable correspondence between transformed and observed volume anomalies, but anomalies in other years must be largely associated with other processes, such as the divergence of horizontal heat transport associated with the AMOC. This technique provides evidence that, in a given year, coordinated physical mechanisms are responsible for the build-up of anomalous ocean heat; not only net surface heat exchange but also the convergence of horizontal heat transport from ocean currents, to provide fuel for larger numbers of intense hurricanes
    corecore