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Review Article

Hyperpolarized 13C MRI: A novel
approach for probing cerebral
metabolism in health and
neurological disease

James T Grist1,2,* , Jack J Miller3,4,5,*, Fulvio Zaccagna2,*,
Mary A McLean2,6, Frank Riemer2, Tomasz Matys2,
Damian J Tyler3,5, Christoffer Laustsen7, Alasdair J Coles8 and
Ferdia A Gallagher2

Abstract

Cerebral metabolism is tightly regulated and fundamental for healthy neurological function. There is increasing evidence

that alterations in this metabolism may be a precursor and early biomarker of later stage disease processes. Proton

magnetic resonance spectroscopy (1H-MRS) is a powerful tool to non-invasively assess tissue metabolites and has many

applications for studying the normal and diseased brain. However, the technique has limitations including low spatial and

temporal resolution, difficulties in discriminating overlapping peaks, and challenges in assessing metabolic flux rather than

steady-state concentrations. Hyperpolarized carbon-13 magnetic resonance imaging is an emerging clinical technique

that may overcome some of these spatial and temporal limitations, providing novel insights into neurometabolism in

both health and in pathological processes such as glioma, stroke and multiple sclerosis. This review will explore the

growing body of pre-clinical data that demonstrates a potential role for the technique in assessing metabolism in the

central nervous system. There are now a number of clinical studies being undertaken in this area and this review will

present the emerging clinical data as well as the potential future applications of hyperpolarized 13C magnetic resonance

imaging in the brain, in both clinical and pre-clinical studies.
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Introduction: metabolic studies of the

brain using proton and carbon-13 MR

spectroscopy

Proton Magnetic Resonance Spectroscopy (1H-MRS) is

a non-invasive technique to probe in vivo metabolism

that has been applied in a number of neurological

diseases such as brain tumors, multiple sclerosis (MS),

traumatic brain injury (TBI), stroke, and dementia.1–5

However, the millimolar concentration of most metab-

olites in human tissues results in a relatively low signal-

to-noise ratio (SNR), therefore limiting the spatial and

temporal resolution that can be achieved within a clin-

ically acceptable scan time.6 Metabolites that are com-

monly probed with 1H-MRS include choline, creatine,

N-acetyl aspartate, and lactate (markers of cellular
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proliferation, mitochondrial metabolism, neuronal

integrity, and glycolytic metabolism, respectively).

However, other metabolites such as glutamate, gluta-

mine, myo-inositol, and hypotaurine (which are

involved in neurotransmission, amino acid metabolism

and act as osmolytes; concentrations of these molecules
vary depending on cellular composition and can be used

to help distinguish tumor subtypes7) are more challeng-

ing to quantify due to overlapping peaks on the 1H-

MRS spectrum at conventional clinical (1.5–3T) field

strengths.6 Although the spatial distribution of these

metabolites can be imaged with MR spectroscopic imag-

ing techniques, this is usually at low spatial resolution

(approximately 3–8mL single voxel volume8) and is time

consuming. The metabolite concentrations derived from
1H-MRS usually reflect steady-state tissue concentra-

tions, which although important, do not reflect enzymat-

ic flux or exchange which is complementary additional

information.
Carbon-13-MRS (13C-MRS) has also been utilized

to non-invasively probe cerebral metabolic pathways

such as the tricarboxylic acid (TCA) cycle, in both
health and disease in a more detailed manner through

the injection of 13C-labelled endogenous tracers such as

glucose, whereby incorporation and metabolism of the
13C label can be followed dynamically, allowing meta-

bolic pathways to be deconvolved in ways which com-

plement the detection of steady-state metabolic pool

sizes.9–13 However, despite the 13C enrichment of the

injected molecule and the negligible 13C signal from

unlabelled background metabolites, the SNR is still
very low, which is partly due to the less favorable mag-

netic properties of 13C compared to 1H (i.e. a lower

gyromagnetic ratio and typically long nuclear T1). This

also restricts the achievable spatial and temporal reso-

lutions of the technique and limits the technique to the

research setting. Metabolic imaging of endogenous 13C

metabolites is currently challenging at clinical field

strengths; however, the increasing number of high field

MR systems at 7T or above offers the potential of using
13C-MRS for thermal experiments in humans.14,15

Dynamic nuclear polarization or

hyperpolarized carbon-13 MRI

Dynamic nuclear polarization (DNP) has been used to

overcome the limitations of 13C-MRS by providing a
temporary increase in SNR of between 10,000 and

100,000-fold, allowing the uptake and metabolic con-

version of physiologically relevant substrates to be

imaged.16–20 This advance has opened up the potential

of the technique to image tissue metabolism in real-

time at high resolution (2–4 s temporal resolution and

with �8mL voxel volume21) and also offers the

possibility of using it as a clinical tool to stratify patients

based on their metabolic phenotype and detect changes

in metabolism in response to treatment. Early clinical

studies have focused on the use of hyperpolarized

pyruvate to probe both glycolysis and TCA metabolism

for oncological, renal, and cardiac metabolism.22–31

This review explores the application of 13C-MRI to

cerebral imaging and its future potential in the clinic.

Requirements for clinical

hyperpolarized studies

Clinical hyperpolarized 13C-MRI requires a dedicated

sterile facility to fill pharmacy kits (a small sterile vial

containing pyruvate, a syringe with water to dissolve

the pyruvate and buffer to neutralize the solution as

shown in Figure 1 32). The filled kit then undergoes

hyperpolarization using a commercial clinical system

(SPINlab, GE Healthcare, see Figure 2) and is quality

checked for parameters such as pH, temperature and

polarization level, before intravenous injection over

5–6 s (�5ml/s) of �250mmol/L hyperpolarized 13C-

pyruvate at 0.4ml/kg body weight. �250mmol/L has

been widely used for the initial clinical studies based on

the concentration of neat pyruvic acid and the volume

of heated water required to dissolve this rapidly and

this concentration has shown a good toxicity profile. This

produces an approximate intravascular concentration of

�1–2mmol/L after injection but a tissue concentration

which is an order of magnitude smaller (�0.1mmol/L)

and similar to the physiological concentration of

Figure 1. A sterile fluid path for clinical studies. The fluid path
contains pyruvate (in sample vial), water for injection (dissolution
syringe), and a neutralization medium (held in the receiver
vessel). The filter on the receiver vessel removes the electron
paramagnetic agent (EPA) prior to quality control (QC).
Figure adapted from Park et al.21
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endogenous pyruvate.33 Lower doses may be possible in
future but produce lower signal, because signal varies lin-
early with the amount of the injected tracer. Imaging the
13C-labelled metabolites is undertaken using dedicated
MRI coils and sequences which acquire rapid images of
the injected substrate and the metabolites that form from
it in real time.21,34–40 Imaging must be performed rapidly,
as the increased polarization is transient and decays with
the T1 of the labelled

13C (less than one minute in blood),
and is therefore a limitation for in vivo measurements of
slow enzymatic reactions.

Cellular localization and quantification of
cerebral pyruvate metabolism

Metabolism can be quantified by modelling the dynam-
ics of signal acquired from the substrate (e.g. pyruvate)
and its products (e.g. lactate or bicarbonate) to infer
enzymatic activity.41 Pyruvate resides at the junction
of several important biochemical pathways such as
the exchange to lactate in the cytosol, catalyzed by the
enzyme lactate dehydrogenase (LDH), or the irreversible
conversion to carbon dioxide, catalyzed by the mito-
chondrial enzyme pyruvate dehydrogenase (PDH). The
labelled carbon dioxide subsequently exchanges with the
bicarbonate pool, catalyzed very rapidly by the enzyme
carbonic anhydrase (CA); this bicarbonate is more easily
detectable due to its higher abundance at physiological
pH.42,43 A confounder for the measurements of PDH
flux is an alternative route of CO2 fixation by pyruvate
carboxylase (PC), which if significant, could lead to an

inaccurate estimation of PDH enzymatic activity using
hyperpolarized pyruvate.44 Therefore, imaging of hyper-
polarized pyruvate metabolism can simultaneously
probe both cytosolic and mitochondrial metabolism.
Many pathological processes can result in alterations
in cerebral metabolism. For example, necrosis,45 inflam-
matory cell activation,46 and breakdown of the blood–
brain barrier47 may result in elevated lactate in the CNS,
either due to increased transport of pyruvate (as in the
case of BBB disruption) or lactate formation (secondary
to increased enzymatic exchange). Discussion of these
effects in multiple sclerosis, stroke, traumatic brain
injury, and brain tumors is found below.

Commonly, the term kPL (the apparent exchange rate
constant for pyruvate conversion to lactate) or the
lactate-to-pyruvate ratio (Lac:Pyr or LP) is used as a
measure of glycolytic activity in the cytosol.41 In con-
trast, the term kPB (the apparent rate constant of the
irreversible conversion of pyruvate to bicarbonate) or
the bicarbonate-to-pyruvate ratio (Bic:Pyr or BP) are
used as a measure of mitochondrial TCA cycle activity.

Hyperpolarized 13C-MRI of the healthy and
diseased brain

There have been a number of pre-clinical studies assessing
the metabolism of hyperpolarized 13C substrates in the
healthy and pathological brain, including traumatic brain
injury, neuro-oncology, multiple sclerosis, and stroke.
Detection of metabolic changes with hyperpolarized
MRS is dependent on the magnitude of these alterations

Figure 2. The clinical “SPINlab” hyperpolariser system exterior (a) and interior (b). The Quality Control (QC) unit is shown on the
right of each image, and the hyperpolarizer on the left. The system is sited next to a clinical scanner with a hatch in the wall for the
delivery of the hyperpolarized sample; this will be placed into a syringe driver and injected into the patient.

Grist et al. 1139



present in the pathological state to be assessed, and small
or transient changes may remain undetectable.

Metabolism in the healthy brain

The normal brain has a high basal metabolic rate and a
reliance upon glucose oxidation.48 Initial hyperpolarized
13C-MRI studies have investigated the metabolism of
hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate in
healthy anaesthetized rodent and macaque brains.49–52

These studies have demonstrated the anaerobic metab-
olism of 13C-pyruvate to 13C-lactate in the brain paren-
chyma, catalyzed by cytosolic LDH, as well as the
formation of 13C-bicarbonate secondary to mitochon-
drial PDH and oxidative metabolism. The latter has
been supported by the alternative approach of using
[2-13C]pyruvate,53 which has shown the formation of
TCA intermediates. Compared to other metabolically
active organs, the apparent rate of metabolism of hyper-
polarized pyruvate in the brain is comparatively low
(�0.003 s�1) compared to liver and kidney (�0.02 and
0.025 s�1 respectively),51,54 which may reflect a limita-
tion of pyruvate transport across the blood–brain bar-
rier (BBB). Studies performed with hyperpolarized
[1-13C]ethyl-pyruvate, a lipophilic analogue of pyruvate,
have revealed enhanced diffusion-facilitated transport
across the BBB and subsequent hydrolysis to pyruvate

followed by exchange to lactate, demonstrating that

BBB transport of pyruvate may be rate limiting in

some species.47,55,56 There is evidence that the detection

of [1-13C]pyruvate metabolism in the anaesthetized por-

cine brain may to some extent be limited by BBB trans-

port47 (Figure 3). Furthermore, studies have also

assessed the difference in pyruvate to lactate exchange

before and after transient opening of the BBB with both

mannitol and focused ultrasound, demonstrating elevat-

ed exchange after permeabilization.47,57

Further pre-clinical healthy brain studies have

demonstrated metabolism with other tracers such as

[1-13C]lactate to measure MCT1 and LDHA activity,

[1-13C]glutamine to measure IDH mutation status,

and ketoisocaproic acid (KIC) to probe leucine

metabolism.56,58,59 A further tracer of interest in

brain studies could be [1,4-13C2]fumarate, which may

inform upon cellular necrosis through exchange to

malate.60 Further probes that may be used in future

clinical work have been reviewed elsewhere.61

Transport of 13C pyruvate across the

anaesthetized blood–brain barrier

Some degree of controversy exists surrounding the rate

of transport and metabolism of pyruvate under

Figure 3. Metabolic imaging of the porcine brain. Imaging of the naı̈ve porcine brain following injection of hyperpolarized
13C-pyruvate. (a) 13C-pyruvate signal is demonstrated in the vasculature. However, no 13C-lactate signal (b) is seen in the brain
parenchyma and therefore no significant metabolism is demonstrated on the kinetic rate constant map (c) (kPL in s�1; calculated only
in the brain region). After the introduction of mannitol, both 13C-pyruvate (d) and 13C-lactate (e) are seen in the brain parenchyma as
demonstrated on the calculated kinetic rate constant map (f). Figure adapted from Miller et al.47
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differing anaesthetic regimes, with initial work suggest-
ing that the quantities of hyperpolarized 13C-bicarbon-
ate and 13C-lactate detected after the injection of

hyperpolarized [1-13C]pyruvate are, to some extent,
dependent upon the anaesthetic regimen used.58

In addition to alterations in transport, anaesthesia
may also lead to metabolic shifts: in the heart, increas-
ing the concentration of inhaled isoflurane has been
shown to shift cardiac metabolism towards glycolysis,
increasing the detected lactate-to-pyruvate ratio and

decreasing the signal from bicarbonate.62 As patients
are usually imaged awake, this could influence compar-
isons between pre-clinical and human results: for
example, the low bicarbonate signal detected in the
anesthetized brain may be explained by a shift towards
glycolysis driven by anaesthesia.58

Imaging the healthy human brain

with hyperpolarized 13C-MRI and

comparison to 18F-FDG PET

Initial clinical studies of healthy brain metabolism have
shown the rapid delivery and metabolism of pyruvate

to bicarbonate, as well as exchange to lactate in the
normal brain parenchyma.63–65 A recent study of the
healthy brain quantified the metabolism of pyruvate in
both white and grey matter, with results revealing
significantly increased 13C-pyruvate, 13C-lactate, and
13C-bicarbonate in grey matter compared to white

matter, which in part may be due to the higher perfu-
sion in the former.63 However, this regional variation is
also likely to relate to real alterations in tissue metab-
olism as there is increased 18F-FDG uptake on PET in
grey matter compared to white matter, which is less
dependent on speed of perfusion.66

In comparison to hyperpolarized 13C-MRI measure-
ments of pyruvate metabolism, 18F-FDG PET provides
a highly sensitive measure of glucose metabolism, par-
ticularly the transport and phosphorylation of the

FDG glucose analogue by GLUT-1 and hexokinase
respectively. However, as PET measures the accumula-
tion of radiolabel, it is unable to discriminate between
the injected radiolabelled tracer and downstream met-
abolic products or their distribution in the cellular or
extracellular spaces. Despite the significant increase in
SNR afforded by hyperpolarization, it remains signifi-

cantly less sensitive to the detection of metabolites than
PET and in general this means a lower spatial resolu-
tion. However, the major strength of HP MRS over
PET is the ability to discriminate the injected substrate
from its metabolic product or products, allowing a
quantitative measure of enzymatic activity.

Moreover, although the spatial resolution of HP
MRS is insufficient to discriminate between

intracellular and extracellular metabolites, as the for-

mation of hyperpolarized lactate is intracellular, its

presence indicates that intracellular metabolism has

occurred even if that lactate has been exported to the

extracellular space. Another important distinction

between the two techniques is the timescale of metab-

olism that is being assessed as HP MRS detects

pyruvate metabolism over seconds to minutes due

to the short half-life, whereas PET assesses FDG

accumulation over minutes to hours; therefore, the

two methods are measuring metabolism on very

different timescales. Therefore, the two techniques

are highly complementary.
Quantitative modelling has shown that there are

regional variations in 13C-pyruvate metabolism

across the brain with lower kPL in deep white matter

compared to the brainstem and basal ganglia.

Interestingly, steady state lactate is not commonly

detected in the resting healthy adult brain using
1H-MRS and the difference between this finding and

the significant 13C-lactate signal demonstrated with

hyperpolarized 13C-MRI may be partly explained by

the fact that the latter probes dynamic changes in lac-

tate labelling following the injection of a supraphysio-

logical bolus of pyruvate. Indeed, it may be that the

static pool of lactate measured by 1H-MRS is relatively

small due to the rapid transport and metabolism of

pyruvate in neurons. A further study focusing on

the use of [2-13C]pyruvate in the healthy brain has

been recently undertaken, with results showing the

formation of TCA intermediates dynamically in the

parenchyma, particularly glutamate.67 Example

hyperpolarized 13C images from healthy volunteers

are seen in Figures 4 and 5.
Further studies with larger cohorts of healthy vol-

unteers at higher spatial resolutions may elucidate

other regional differences in the metabolism of the

healthy brain, allowing for a better understanding of

normal cerebral physiology, as well as providing a

baseline for comparison to pathological tissue.

Imaging the diseased brain with

hyperpolarized 13C-MRI

There are a number of neurological conditions which

could benefit from the application of hyperpolarized
13C-MRI to understand alterations in neurological

metabolism due to cerebral insult and therapeutic

response. This review will discuss neuro-oncology, mul-

tiple sclerosis (MS), traumatic brain injury (TBI) and

stroke. Elevation in tissue lactate is a common feature

in all of these conditions which raises the potential for

the use of hyperpolarized 13C-MRI as a tool to probe

metabolism in many neurological conditions.
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Brain tumors

Several early studies using hyperpolarized [1-13C]pyru-

vate as a probe for pre-clinical models of brain tumors

have demonstrated increased lactate in implanted cere-

bral tumors, both orthotopic xenograft models in immu-

nocompromised animals and implanted rodent-derived

cell cultures in immunocompetent animals.68–70 Lactate

labelling has been shown to correlate with the histolog-
ical aggressiveness of the tumor and a reduction in lac-
tate labelling has been shown to correspond to therapy
response, as chemotherapeutic agents such as temozolo-
mide may have a metabolic effect before a reduction
in tumor volume.56,71 Several studies assessing HP
13C-MRS to detect therapeutic response in neuro-
oncology have been undertaken, with reductions in the

Figure 5. Resolution of 13C imaging of the normal human brain. (a) Proton anatomical imaging. IDEAL spiral Chemical Shift Images
(CSI) are shown at the acquired spatial resolution to demonstrate the difference in SNR between: (b) pyruvate; (c) lactate; and (d)
bicarbonate. 13C images are normalized to the metabolite peak signal in the slice. Imaging parameters: field of view¼ 240 mm, matrix
size¼ 40� 40, slice thickness¼ 30 mm. Adapted from Grist et al.63

Figure 4. 13C imaging demonstrating metabolite distribution in the healthy human brain. Example summed images from the brain
of a healthy volunteer demonstrating 13C-pyruvate, 13C-lactate, and 13C-bicarbonate signal from three axial slices: superior,
central and inferior. The T1-weighted images have also been shown, as have the quantitative maps of the exchange of pyruvate to
lactate (kPL in s�1).63
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lactate signal observed following successful therapies,
such as anti-VEGF,72 telozolomide,73 dichloroacetate,74

and radiotherapy.75 Therefore, the use of hyperpolarized
13C-MRI may be a valuable tool in the monitoring of
neuro-oncological disease before and after chemothera-
py and radiotherapy. The isocitrate dehydrogenase-1
(IDH-1) mutant status of glioma has been shown to
correlate with the metabolism of hyperpolarized
[1-13C]alpha-ketoglutarate and its subsequent conver-
sion through the branched-chain amino acid transami-
nase BCAT1 to [1-13C]glutamate, with the latter being
significantly lower in mutant IDH1 cells and tumors.76

Such reactions form a specific readout of the tumor
metabolome and are more challenging to assess
with conventional in vivo non-invasive methods, such
as proton spectroscopy.77 Therefore, this offers a prom-
ising target for non-invasively phenotyping tumors with
hyperpolarized 13C-MRI.

Initial human studies have assessed the feasibility of
using hyperpolarized [1-13C]pyruvate to probe brain
tumor metabolism.21,78 In keeping with the many pre-
clinical studies in this field, this work has shown that
there is significant conversion of pyruvate to lactate in
a diverse range of tumors such as high grade glioma,75

oligodendroglioma79 and melanoma metastases.79

However, there is a high degree of variation in lactate
labelling between tumors, reflecting the complex het-
erogeneity of human tumors in comparison to animal
models.21,78 This preliminary evidence provides some
initial evidence for the potential role for the technique
in studying brain tumors and future work will address
the significance of the technique.

Multiple sclerosis

Multiple Sclerosis (MS) is characterized by inflamma-
tion of the central nervous system, leading to inflam-
matory demyelination of neurons and oligodendrocyte
death, and subsequently elevated metabolic demands
on neurons caused by a toxic elevation of extracellular
ions such as calcium and sodium.80 Preclinically, hyper-
polarized 13C-MRS has been used to characterize a
cuprizone model of MS, which reproducibly develops
inflammatory lesions that attract proinflammatory
mononuclear phagocytes, particularly in the corpus
callosum, similar to the human disorder.81 An elevated
lactate signal was demonstrated within MS lesions that
were histologically confirmed to be rich in mononucle-
ar phagocytes. Moreover, these activated proinflamma-
tory mononuclear phagocytes had elevated pyruvate
dehydrogenase kinase 1 (PDK1), responsible for inhi-
bition of the oxidation of pyruvate by mitochondrial
PDH, leading to increased metabolism to lactate in the
cytosol. As well as furthering our understanding of
lesional metabolism, hyperpolarized 13C-MRI could

provide key insights into the viability of normal
appearing tissue in the MS brain, through the assess-
ment of lactate exchange and bicarbonate metabolism
in normal appearing white and grey matter.

Traumatic brain injury

Acute TBI produces characteristic metabolic changes in
the brain, both locally and remote to the site of injury,
with elevated lactate detected with 1H-MRS.82,83 As TBI
is known to actively inhibit PDH activity and initiate
mitochondrial dysfunction within 4 h after injury,84

hyperpolarized pyruvate may potentially form a useful
metric for understanding and quantifying the degree of
injury sustained.85 TBI is a major cause of death and
long-term disability, characterized by cognitive and
memory impairment, mood disorders and neurodegen-
erative diseases.

Non-invasively detecting the spatial distribution of
this metabolic dysregulation is challenging with conven-
tional MRS and consequently invasive measures have
been used to characterize this heterogeneity.86 Initial
preclinical results with hyperpolarized [1-13C]pyruvate
have shown regional alterations in lactate and bicarbon-
ate formation after TBI, reporting a �24% decrease in
oxidative metabolism at the injury site and a concomi-
tant increase in lactate production.85 Interestingly, there
is some evidence that pyruvate or ethyl-pyruvate admin-
istration alone may be neuroprotective following TBI in
the rat, albeit at higher doses than are typically used for
hyperpolarized imaging experiments.87

Stroke

Hyperpolarized 13C-MRI may have a significant role in
understanding the development and response of the
ischemic penumbra in stroke. A pre-clinical endothelin-
1-induced ischaemic stroke model has been used to assess
the metabolic alterations following acute ischaemic
stroke in rats.49 The results showed an increase in total
lactate production in the ischemic penumbra compared
to the contralateral brain, which can partly be attributed
to increased pyruvate supply and partly to LDH-
mediated lactate formation. It is known that ischemia
is a gradual process characterized by an intermediate
stage in which the metabolic activity of the penumbral
tissue is impaired but the damage is reversible and there
is therefore the potential for complete functional recov-
ery if blood flow is restored.4 Currently, the ischemic
penumbra is identified by the mismatch between perfu-
sion and diffusion on MRI; however, as the penumbra
has a high rate of glucose extraction characterized by
anaerobic glycolysis and subsequent elevated lactate pro-
duction, this could be detected through the altered
metabolism of hyperpolarized 13C-pyruvate.88 Indeed,
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invasive studies have shown that a measurement of met-
abolic activity in the penumbra may be more sensitive
than conventional imaging approaches when estimating
penumbral viability.89 Therefore, since hyperpolarized
13C-MRI can identify and quantify the dynamic produc-
tion of lactate, it may be used to better visualize and
characterize the penumbra, in a non-invasive fashion.
However, studies focusing on longitudinal measurements
of penumbral metabolism are required to understand the
true potential of hyperpolarized13C-MRI to detect early
response of the penumbra to treatment.

Concluding remarks

In conclusion, hyperpolarized 13C-MRI provides a
highly sensitive technique to directly and non-
invasively probe the dynamics of tissue metabolism in
vivo and offers the possibility to undertake novel in vivo
biological explorations of neurological disease. The
temporal and spatial resolution of conventional
proton MR spectroscopy has been limited by low
signal-to-noise, but the very significant increase in
signal afforded by hyperpolarized 13C-MRI has
allowed the cerebral metabolism of 13C-pyruvate to
be probed in real time. The technique has applications
in a wide spectrum of diseases where metabolic status is
impaired, reprogrammed or jeopardised. This method
has revealed new insights into cerebral metabolism and
offers a novel approach to study neurological disease,
in particular the interplay between aerobic and anaer-
obic metabolism as seen in diseases as diverse as stroke,
multiple sclerosis and brain tumors.
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