13 research outputs found

    OpenET : filling a critical data gap in water management for the western United States.

    Get PDF
    The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data-driven irrigation management strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field-scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community-driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well-established satellite-based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web-based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite-driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET

    Multi-Purpose Optimization for Reconciliation Ecology on an Engineered Floodplain: Yolo Bypass, California

    No full text
    Floodplains in California and elsewhere are productive natural habitats with high levels of biodiversity, yet today they are often permanently disconnected from rivers by urban or agricultural development and flood management structures. This disconnection poses a threat to many native fish, bird and other species that evolved to take advantage of seasonal floodplain inundation. The traditional restoration approach to this problem is to recreate historical floodplain by restoring natural hydrologic and successional processes. However levees, dams, and development have made this largely impossible in much of the developed world. Reconciliation ecology recognizes this limitation, and encourages instead the re-engineering of human dominated landscapes to allow for coexistence of native species and human uses. Flood control bypasses are particularly promising places to reconcile historical fish and bird uses of floodplain habitats with human uses. However, the reconciliation approach requires nuanced management of a complex system. Using the Yolo Basin flood bypass in California’s Central Valley as an example, this study develops formal multi-objective optimization to help planners identify management options that best improve habitat quality for fish and birds with minimal costs to farmers or wetland managers. Models like the one developed here can integrate large amounts of data and knowledge, and offer an explicit accounting of relationships and trade-offs between different objectives. This is especially useful in reconciliation planning, where many uses and variables interact on a landscape, and deliberate re-engineering requires consideration of many decisions simultaneously. Initial results suggest that modest land-use changes and inundation management strategies can significantly improve seasonal bird and fish habitat quality at little cost to farmers or other human land uses. The model applications demonstrate the usefulness of multi-objective optimization in reconciling managed floodplains, and provide a framework for integrating new knowledge and testing varying assumptions to improve management over time

    Effect of aspirin on disability-free survival in the healthy elderly

    Get PDF
    Background: Information on the use of aspirin to increase healthy independent life span in older persons is limited. Whether 5 years of daily low-dose aspirin therapy would extend disabilityfree life in healthy seniors is unclear. Methods: From 2010 through 2014, we enrolled community-dwelling persons in Australia and the United States who were 70 years of age or older (or =65 years of age among blacks and Hispanics in the United States) and did not have cardiovascular disease, dementia, or physical disability. Participants were randomly assigned to receive 100 mg per day of enteric-coated aspirin or placebo orally. The primary end point was a composite of death, dementia, or persistent physical disability. Secondary end points reported in this article included the individual components of the primary end point and major hemorrhage. Results: A total of 19,114 persons with a median age of 74 years were enrolled, of whom 9525 were randomly assigned to receive aspirin and 9589 to receive placebo. A total of 56.4% of the participants were women, 8.7% were nonwhite, and 11.0% reported previous regular aspirin use. The trial was terminated at a median of 4.7 years of follow-up after a determination was made that there would be no benefit with continued aspirin use with regard to the primary end point. The rate of the composite of death, dementia, or persistent physical disability was 21.5 events per 1000 person-years in the aspirin group and 21.2 per 1000 person-years in the placebo group (hazard ratio, 1.01; 95% confidence interval [CI], 0.92 to 1.11; P = 0.79). The rate of adherence to the assigned intervention was 62.1% in the aspirin group and 64.1% in the placebo group in the final year of trial participation. Differences between the aspirin group and the placebo group were not substantial with regard to the secondary individual end points of death from any cause (12.7 events per 1000 person-years in the aspirin group and 11.1 events per 1000 person-years in the placebo group), dementia, or persistent physical disability. The rate of major hemorrhage was higher in the aspirin group than in the placebo group (3.8% vs. 2.8%; hazard ratio, 1.38; 95% CI, 1.18 to 1.62; P<0.001). Conclusions: Aspirin use in healthy elderly persons did not prolong disability-free survival over a period of 5 years but led to a higher rate of major hemorrhage than placebo
    corecore