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ABSTRACT: The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of
water by irrigated agriculture is one of the most important data gaps for water managers in the western United
States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is cen-
tral to improving water budgets across the West, advancing the use of data-driven irrigation management
strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET
have led to the development of multiple approaches for field-scale ET mapping that have been used for local and
regional water resource management applications by U.S. state and federal agencies. The OpenET project is a
community-driven effort that is building upon these advances to develop an operational system for generating
and distributing ET data at a field scale using an ensemble of six well-established satellite-based approaches for
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mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web-
based data explorer and data services; supporting the use of ET data for a range of water resource management
applications; and development of use cases and training resources for agricultural producers and water resource
managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite,
meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We
also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements
of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24
cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement
between the satellite-driven ET models and the flux tower ET data. For the six models that have been evaluated
to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop) and the ensemble mean, the
weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a
monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the
models the weighted mean total ET is within �8% of both the ensemble mean and the weighted mean total ET
calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across
nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites
and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased
access to ET data, and discuss key lessons learned from the development of OpenET.

(KEYWORDS: agriculture; consumptive use; evapotranspiration; field scale; Landsat; open data systems; remote
sensing; satellite; water sustainability.)

INTRODUCTION

Drought and water scarcity are becoming peren-
nial challenges across the western United States
(U.S.), and recent studies have highlighted the poten-
tial for interactions between climate change and nat-
ural variability in precipitation to drive acute and
prolonged drought events in the region (Diffenbaugh
and Swain 2015; Williams et al. 2020). Ensuring ade-
quate water supplies for food production while sus-
taining water supplies for domestic, industrial, and
environmental uses requires careful management of
water resources. Challenges in accessing consistent,
accurate information on evapotranspiration (ET) and
consumptive use of water by irrigated agriculture is
one of the most important data gaps for water man-
agers in the western U.S. and other arid agricultural
regions globally. While accurate data for all hydrolog-
ical variables are important to improving both local
and regional water balances and information on
water supplies, data on ET are particularly important
for improving the management of water resources in
the western U.S. and High Plains, since ET is the
second-largest component of the surface water bal-
ance, following precipitation (Arnold et al. 1999). ET
is the transfer of water vapor to the atmosphere
through the combined processes of evaporation from
the Earth’s surface (including water bodies) and tran-
spiration through plant tissues. The ET that occurs
as a result of application of water to a field is
removed from the water supply within a basin. For
agricultural fields over unconfined aquifers, ET is

often equivalent to the consumptive use, which is a
use of water that removes water from available sup-
plies without a return to a water resource (Jensen
1974). In the western U.S., ET from irrigated agricul-
tural lands accounts for the large majority of con-
sumptive water use, and ranges from 59% in Texas
to 97% in Idaho, with a West-wide average of approx-
imately 80% of total water use by people (Dieter
et al. 2018). ET data can be valuable in guiding irri-
gation management and scheduling to maximize on-
farm water use efficiency and crop yields, supporting
water trading programs, developing accurate water
budgets, and advancing water management strategies
to sustain water supplies for agriculture, people, and
ecosystems (Fisher et al. 2017). Developing innova-
tive and effective water management strategies is dif-
ficult without accurate, consistent information about
ET from agricultural lands. However, at present,
there is not a single and universally accepted source
of field-scale ET information for the U.S. (Evenson
et al. 2018). ET is consistently identified as a high
priority data gap or information need in assessments
conducted for the U.S. water resources management
community (MDNR Technical Workgroup 2010;
Jenkins et al. 2018; National Academies of Sciences,
Engineering and Medicine, Space Studies Board
2019; WWAO 2020).

While there are a wide range of approaches avail-
able for measuring ET (Alfieri and Kustas 2020), it is
difficult and expensive to measure accurately on the
ground, and current approaches require specialized
instrumentation and knowledge (Allen et al. 2011).
ET rates vary substantially across the landscape,
making it impractical to estimate through
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interpolation from sparse networks of ground-based
monitoring stations, as is commonly performed for
precipitation, runoff, and groundwater elevations
(Dunn and Mackay 1995; Hatfield and Prueger 2011).
Recent advances in remote sensing of ET have led to
the development of multiple approaches for ET map-
ping across the land surface at a spatial scale of
30 × 30 m (0.22 acres) per pixel, and many are
advancing toward operational use by U.S. state and
federal agencies (Anderson et al. 2012; Irmak 2012;
Melton et al. 2012; Senay et al. 2013; Fisher et al.
2017). The OpenET project is integrating many of
these advances and supporting further improvements
in water management by increasing access to remo-
tely sensed ET data. OpenET has developed a plat-
form for data processing and distribution to provide
automated and widely accessible ET data at user-
defined spatial scales and timeframes across the
western U.S. OpenET is a collaborative effort involv-
ing six ET modeling teams from the U.S. and Brazil,
and (in alphabetical order) California State Univer-
sity Monterey Bay, the Desert Research Institute,
Environmental Defense Fund, Google LLC, Habitat
Seven, National Aeronautics and Space Administra-
tion (NASA), Stanford University, U.S. Department
of Agriculture (USDA), U.S. Geological Survey
(USGS), Universidade Federal do Rio Grande do Sul,
University of Idaho, University of Maryland, Univer-
sity of Nebraska-Lincoln, University of Wisconsin,
and key partners from the agriculture, water
resource management, and conservation communi-
ties. The project is implementing an ensemble of
satellite-based ET models on Google Earth Engine
(Gorelick et al. 2017), which provides a shared, high
performance, cloud-based, computing platform where
teams can collaborate on preprocessing of satellite,
meteorological, and land cover inputs to increase the
consistency of data processing and reduce the range
of estimates from the ensemble of models. While
OpenET could be implemented on other cloud-based
platforms in the future, Earth Engine currently pro-
vides automated services for retrieval, storage, and
access for all required inputs to the ET models, free-
ing the modeling teams to focus on improvement of
the model implementations and efficient processing of
satellite and meteorological inputs.

OPENET MODELS AND DATA INPUTS

The current ensemble of ET models included in
OpenET is summarized in Table 1. Models selected
for inclusion in the OpenET ensemble have been used
by government agencies with responsibility for water

use reporting and management in the western U.S.,
and some models are widely used internationally.
Prior use by a state or federal agency in the western
U.S. was a primary requirement for inclusion of a
model in OpenET, in addition to participation in
OpenET by one or more members of the science team
that originally developed each model. OpenET relies
entirely on publicly available satellite, meteorology,
crop type, topography, land use, and soils data as
inputs to the ET models. Landsat is currently the pri-
mary satellite dataset used within the OpenET plat-
form, where all models rely on Landsat satellite data
to produce data at a spatial resolution of 30 × 30 m,
along with gridded weather variables including solar
radiation, air temperature, humidity, and wind
speed. The Landsat program, a joint effort of NASA
and the USGS, provides the longest continuous
space-based record of Earth’s land surface in exis-
tence, dating back to 1972 for optical data and to
1982 for thermal data. Landsat is currently the only
operational satellite that combines thermal and opti-
cal data at the spatial resolution needed to calculate
surface energy balances at the level of individual
agricultural fields, which is often required for assess-
ing water use and managing water rights. Several
models implemented within the OpenET framework
also integrate data from GOES, Sentinel-2, Suomi
NPP, Terra, Aqua, ECOSTRESS, and other satellites

TABLE 1. Models used in OpenET.

Model acronym Model name
Primary refer-

ences

ALEXI/
DisALEXI

Atmosphere-Land
Exchange Inverse/
Disaggregation of the
Atmosphere-Land
Exchange Inverse (ver.
0.0.27)

Anderson et al.
(2007, 2018)

eeMETRIC Mapping
Evapotranspiration at
High Resolution with
Internalized Calibration
(ver. 0.20.15)

Allen et al. (2005,
2007, 2011)

geeSEBAL Surface Energy Balance
Algorithm for Land
using Google Earth
Engine (ver. 0.2.1)

Bastiaanssen et al.
(1998); Laipelt
et al. (2021)

PT-JPL Priestley-Taylor Jet
Propulsion Laboratory
(ver. 0.2.1)

Fisher and Tu
(2008)

SIMS Satellite Irrigation
Management Support
(ver. 0.0.20)

Melton et al. (2012);
Pereira et al.
(2020)

SSEBop Operational Simplified
Surface Energy Balance
(ver 0.1.5)

Senay et al. (2013);
Senay (2018)
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to produce ET data at a range of spatial and temporal
scales.

The primary satellite and meteorological inputs to
each model are summarized in Table 2. The OpenET
ensemble includes both energy balance and
reflectance-based approaches to ET mapping, models
that were developed for global monitoring applica-
tions, and models that were developed for local-scale
irrigation management. The ensemble includes mod-
els that leverage gridded meteorological reference ET
data for time integration between Landsat overpass
dates, and models that utilize coarser resolution data
from geostationary satellites to derive daily ET val-
ues (Table 2). This diversity of approaches helps to
overcome the limitations of any particular model,
while improving the reliability of data for operational
use over the long term.

The approach taken by OpenET of implementing an
ensemble of models is designed to better inform practi-
tioners regarding ET model agreement and disagree-
ment, ensure data continuity, and take advantage of
the strengths of the different ET mapping methods
across different regions and land cover types. In cases
where estimates from different methods vary substan-
tially, the differences in estimates can present an
important impediment to effective adoption of remo-
tely sensed ET data, as users and developers of the
data must resolve questions regarding overall model
accuracy and dependability, and identify the “best”
model for use for the intended location and application.
One key objective of OpenET is to calculate a single,
ensemble ET value for each location and timestep,
while still making the individual model results avail-
able. The OpenET ensemble value used in this study
was calculated as the mean of all models, and this
approach has performed well during Phase I of the
intercomparison and accuracy assessment described
below. Other options for calculation of the ensemble
value include use of the ensemble median or a
weighted mean, outlier filtering based on the median
absolute deviation (Leys et al. 2013), or even a single
value from the most accurate model for a particular
geographic region, season, land cover, or crop type. A
strength of the ensemble approach is that providing a
single ET value from an ensemble of well-established
approaches addresses questions from the practitioner
community regarding which model to use while provid-
ing transparency about the range of estimates as an
indicator of model uncertainty. One disadvantage of
the ensemble approach is that the accuracy of any
weighted or unweighted mean of multiple models can
be negatively influenced by outliers. To address this,
the results from Phase II of the intercomparison study
will be used to calculate the final ensemble value,
where models that consistently perform poorly for par-
ticular regions, crops, or land cover types may be fil-
tered out or have lower weighting.

TABLE 2. Primary Model Inputs

Model
acronym

Satellite and ancillary
inputs Meteorological inputs

ALEXI/
DisALEXI

Primary: Thermal data
from GOES (ALEXI)
and Landsat
(DisALEXI); surface
reflectances from
MODIS and Landsat
TM/ETM+/OLI

Secondary: NLCD land
cover data

Insolation, near-surface
wind, air temperature,
vapor pressure and
atmospheric pressure
from the Climate
Forecast System
Reanalysis (CFSR);
ALEXI additionally uses
CFSR atmospheric
temperature profile data

eeMETRIC Primary: Surface
reflectance and thermal
radiation from Landsat
TM/ETM+/OLI

Secondary: NLCD land
cover data (for USA)
and GlobCover for the
globe, SRTM DEM,
SURGO (USA) and FAO
Harmonized World Soil
Database v 1.2 (globe)

Insolation, near-surface
wind speed, air
temperature, and vapor
pressure from CIMIS
and North American
Land Data Assimilation
System (NLDAS) for the
USA, and from Climate
Forecast System Ver. 2
(CFSV2) for the globe;
Precipitation from
gridMET

geeSEBAL Primary: Surface
reflectance and thermal
radiation from Landsat
TM/ETM+/OLI

Secondary: Elevation
from SRTM; Cropland
data layers from USDA
NASS

Daily shortwave incident
radiation from
GRIDMET; Hourly
near-surface wind
speed, air temperature,
specific humidity and
atmospheric pressure
from NLDAS

PT-JPL Primary: Surface
reflectance and thermal
radiation from Landsat
TM/ETM+/OLI

Secondary: MODIS
maximum fraction of
absorbed
photosynthetically
active radiation (fAPAR)

Insolation, near-surface
wind speed, air
temperature, and vapor
pressure from CIMIS
and North American
Land Data Assimilation
System (NLDAS)

SIMS Primary: Surface
reflectances from
Landsat TM/ETM+/OLI
and Sentinel-2A/2B

Secondary: USDA
Cropland Data Layer
and state crop mapping
data products; Surface
reflectances from Terra/
Aqua MODIS and
Suomi NPP VIIRS can
be used for gap-filling

ETo data from Spatial
CIMIS (in California);
gridMET ETo and
precipitation data for
other states

SSEBop Primary: Thermal
radiation from Landsat

Secondary: NDVI from
Landsat and SRTM
DEM

ETo data from Spatial
CIMIS (in California)
and gridMET; Daymet
Daily Maximum Air
Temperature (long-term
average)

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION974

 17521688, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1752-1688.12956 by C

A
PE

S, W
iley O

nline L
ibrary on [16/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



OpenET uses weather station measurements
across the U.S. that are integrated into assimilation
systems to produce spatially distributed or gridded
weather datasets including gridMET (Abatzoglou
2013) for calculation of grass reference ET (ETo) and
precipitation, Spatial CIMIS (Hart et al. 2009) for cal-
culation of ETo in California, and the North American
Land Data Assimilation System (NLDAS; Mitchell
et al. 2004; Xia et al. 2012; Zhang et al. 2020) for cal-
culation of instantaneous ET on the dates of satellite
overpass. These datasets are used within the OpenET
platform for various model parameters and variables,
such as atmospheric stability, net radiation, wind
speed, precipitation, and surface air temperature gra-
dients. One of the primary variables derived from
gridded weather data is grass reference ET (ETo),
which is calculated using the American Society of
Civil Engineers (ASCE) Standardized Penman-
Monteith equation (Walter et al. 2000; ASCE-EWRI
2005). With the exception of ALEXI-DisALEXI, ETo

data are used to support the calculation of daily
actual ET between Landsat satellite overpasses,
which currently occur every eight days. First, the
fraction of grass reference ET (EToF) for each satel-
lite overpass date and for each 30 m pixel is calcu-
lated by dividing the satellite-derived ET by the ETo.
The EToF values, which are relatively stable over
time (Allen and Tasumi 2007; Chávez et al. 2008),
are then linearly interpolated on a daily timestep for
all days between cloud-free satellite overpass dates.
Next, each EToF value is multiplied by the corre-
sponding daily ETo value to produce a daily time ser-
ies of actual ET for every pixel. These per-pixel, daily
time series of actual ET are then aggregated to
monthly and annual time periods. To ensure that
gridded ETo data are representative of agricultural
weather conditions, hundreds of weather stations
located in agricultural areas were filtered, quality
controlled and then used by OpenET for bias correc-
tion of gridded ETo. Weather station data were
passed through rigorous quality assurance and qual-
ity control (QAQC) procedures following Allen (1996)
and ASCE and FAO guidelines (Allen et al., 1998;
ASCE-EWRI 2005).

One exception to the ETo approach to time integra-
tion is the ALEXI/DisALEXI model. ALEXI/DisA-
LEXI uses the coarser resolution ET information
derived from the ALEXI model (Anderson et al. 2007)
driven with GOES satellite data to provide the daily
ET, and applies the DisALEXI algorithm to disaggre-
gate the coarser resolution ET data to 30 m using the
Landsat thermal and multispectral data (Cammalleri
et al. 2013). DisALEXI uses daily solar insolation to
interpolate ET for days between Landsat overpass
dates. The ALEXI/DisALEXI ET modeling system
also uses meteorological inputs from the Climate

Forecast System Reanalysis (CFSR) (Saha et al.
2010, 2014).

Following the production of daily and monthly ET
by individual models and production of ensemble ET
values, OpenET relies upon a number of publicly
available datasets related to land cover and agricul-
tural field boundaries to compute data summaries for
millions of agricultural fields. Ancillary data used by
OpenET include crop type information from the
USDA Cropland Data Layer (CDL) (Boryan et al.
2011) as well as state agencies, USDA soils data, the
USGS National Elevation Dataset (NED) (Gesch
et al. 2002), USGS land use classifications from the
National Land Cover Database (NLCD) (Homer et al.
2015), irrigation status datasets (Ketchum et al.
2020), and manually digitized agricultural field
boundaries from USDA, state agencies, and research
groups. The USDA CDL data product is updated
annually, and crop type data from states including
California, Idaho, Washington and others are
updated by state agencies on intervals of one to three
years. OpenET updates crop type information for all
fields on an annual basis, giving priority to state-
level data products, and using the USDA CDL for all
locations for which state-level data are not available.
OpenET plans to compile and update field boundaries
from publicly available data sources every five years.
These ancillary datasets are used to support data
exploration, calculation of summaries of ET and other
variables for individual fields, and for aggregation of
data by crop type and land cover classification. In
cases where the user has more accurate local infor-
mation on field boundaries, crop type, irrigation sta-
tus, land cover type or other ancillary information,
the OpenET Application Programming Interface
(API) can be used to extract data summaries for these
user-defined regions of interest using a raster mask,
shapefile, or other geometry.

MODEL INTERCOMPARISON AND ACCURACY
ASSESSMENT

Recently, Foster and Mieno (2020) highlighted the
importance of conducting rigorous analyses of remo-
tely sensed ET and estimates of agricultural water
use prior to application of the data for water resource
management applications. A rigorous analysis of the
accuracy of the satellite-based ET models in the
OpenET ensemble is central to decisions by agricul-
tural producers and water managers to use data from
OpenET for applications at field to basin scales. The
OpenET team is currently conducting one of the lar-
gest model intercomparison and accuracy
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assessments to date for the field-scale ET modeling
systems included in the OpenET ensemble. The pri-
mary dataset for the intercomparison and accuracy
assessment study has been collected from eddy
covariance (EC) networks that measure the
exchanges of water vapor, carbon dioxide, and energy
between the land surface and the atmosphere. These
stations are important because they provide in situ
estimates of ET for specific locations with known land
use and vegetation types. The current ground-based
ET dataset includes more than 139 flux tower sites
across the U.S., including data collected at Ameriflux
sites and included in the FLUXNET2015 dataset
(Baldocchi et al. 2001; Pastorello et al. 2017, 2020),
as well as additional flux towers deployed on agricul-
tural fields by collaborators at USDA, USGS, the
University of California Agriculture and Natural
Resources (UCANR) Institute and other university
partners (Anderson et al. 2017; Alfieri et al. 2019;
French et al. 2020; Pereira et al. 2020). Nearly all
flux tower sites in the dataset are instrumented with
open path EC instrumentation systems (Baldocchi
2014). While the exact instrumentation varies by site,
all sites include a four-way net radiometer to mea-
sure net radiation, an infrared gas analyzer and 3D
ultrasonic anemometer to measure latent and sensi-
ble heat fluxes, and heat flux plates and soil thermo-
couple probes to measure the ground heat flux.
Additional information about the typical instrumenta-
tion deployed at the Ameriflux sites is provided in
Baldocchi et al. (2001).

The OpenET team developed and applied a rigor-
ous and automated screening process to review the
EC data, identify outliers, fill gaps in the instrument
measurement record, and perform daily energy bal-
ance closure following an adaptation of data process-
ing procedures established by the FLUXNET2015
dataset (Pastorello et al. 2017, 2020). Flux tower
datasets were extensively screened using automated
procedures, followed by visual inspection to identify
outliers and gaps in instrument measurement records
(Volk et al., 2021). Data gaps in the flux tower ET
datasets of up to two hours during the daytime, as
defined by periods of positive net radiation, and up to
four hours during periods of negative net radiation,
were gap-filled using linear interpolation. Days hav-
ing longer time gaps were excluded. Site data records
were filtered to exclude months having more than
five missing days of in situ ET estimates per month.
For months with fewer than five missing days, miss-
ing days were gap-filled through linear interpolation
of daily EToF values calculated from the flux tower
ET data record to estimate EToF values for the miss-
ing days. The daily EToF value on each missing day
was then multiplied by the corresponding bias-
corrected gridMET ETo value to provide an estimate

of ET. Daily energy balance closure ratios were calcu-
lated at each site for non-gap filled daily data as the
ratio of turbulent to radiative fluxes. Only sites hav-
ing a minimum average daily energy balance closure
ratio of 0.75 during the growing season, and 0.6 dur-
ing the winter, were included in the intercomparison
study. For all sites included in the analysis, we per-
formed an energy balance closure adjustment at
daily timesteps using the energy balance ratio
approach (Wilson et al. 2002; Pastorello et al. 2020).
We used the average daily energy balance closure
ratio and the difference between the closed and
unclosed data record as indicators of the uncertainty
and measurement error in the flux tower datasets.
As a final step, sites were reviewed using aerial ima-
gery from the USDA National Agricultural Imagery
Program (NAIP) and wind speed and direction data
from the site to ensure that the flux tower location
was representative of the surrounding field or land
cover type to be sampled from the remote sensing
models, and that the vegetation condition was rela-
tively homogenous in the direction of the predomi-
nant winds. A Landsat-based normalized difference
vegetation index (NDVI) analysis was used to assess
and confirm the uniformity of vegetation surround-
ing the flux sites. Two static footprints were ana-
lyzed for each site: a 90 × 90 m footprint and a
210 × 210 m footprint. By default, these footprints
were centered on the flux tower, but were shifted by
30–90 m if required based on the analysis of wind
direction and conditions surrounding the tower loca-
tion to avoid inclusion of roads, buildings, adjacent
fields, ponds, or other nonrepresentative surfaces in
the upwind tower footprint. In addition, a dynamic
footprint analysis was conducted based on the two-
dimensional Flux Footprint Prediction approach out-
lined in Kljun et al. (2015) to identify sites where a
static footprint may not sufficiently capture the
effects of variable wind directions on the measure-
ment footprint of each tower (e.g., large differences
in wind direction and speed between the morning
and afternoon or seasonally). No sites were removed
as a result of this analysis, but the static footprints
were adjusted at 115 sites, including 18 of the 24
Phase I cropland sites, to account for prevailing
wind direction or the presence of nonrepresentative
surfaces in the tower footprint. A table summarizing
the site ID, site name, crop type, location, and
energy balance closure for each of the 24 Phase I
cropland sites is provided in the Supporting Informa-
tion.

The OpenET model intercomparison and accuracy
assessment is being conducted in two phases. In
Phase I, data from each model have been extracted
over the footprints of 70 flux tower sites, including 24
cropland sites across the U.S. All models were run in
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a fully automated mode and the flux tower data were
not shared with the modeling teams until the com-
parisons were complete. For many of the models, this
is the first time they have been run on a cloud-based
platform in a fully automated framework over a geo-
graphic region the size of the western U.S. As such,
the results from Phase I summarized in the following
section were shared with the teams to evaluate model
performance and make improvements to account for
errors in the model implementation or to address sys-
tematic errors for regions, seasons or land cover
types. For Phase II, an additional 69 sites (~50%)
have been held back for a blind intercomparison that
will be used to assess the final accuracy of each
model and make a determination regarding which
method to use to calculate the ensemble ET value.
Data from an additional 33 sites not included in
Phase I or Phase II have also been reserved for
future accuracy assessments. Phase I results for crop-
lands are summarized in the following section to
illustrate the performance of the individual models
and the ensemble value.

MODEL INTERCOMPARISON AND ACCURACY
ASSESSMENT: PHASE I RESULTS

The overall results for the comparisons between
the flux tower ET and the ET from the OpenET
ensemble average and individual models are summa-
rized in Table 3 for monthly data, and in Table 4 for
daily data on satellite overpass dates . Results are
shown for the ensemble mean as well as the range
across the ensemble of models. Key metrics summa-
rized in Tables 3 and 4 include the slope of the best
fit line through the origin, the mean absolute error
(MAE), mean bias error (MBE) and root mean
squared error (RMSE) in mm/month or mm/day, and
the coefficient of determination (r2). The r2 values
were calculated as the square of the Pearson’s
product-moment correlation coefficient. Acknowledg-
ing its limitations as a measure of goodness of fit for
model evaluation (Legates and McCabe 1999), we
include r2 as an easily interpreted indicator of the
proportion of total variance in the flux tower data
that can be explained by the satellite-driven ET mod-
els. ET values for the 24 cropland flux sites were cal-
culated using the closed energy balance. ET values
for the satellite-driven models are shown for the
90 × 90 m footprints for each site; results from the
210 × 210 m footprints were very similar. Site
UA2_KN20 was a short-season leaf lettuce crop, and
after QAQC filtering, it did not have one complete
month of data and was removed from the monthly

statistics. The 23 remaining sites had a combined
total of 1,307 complete monthly data records, and
daily comparisons were conducted for all dates for
which satellite data were available over each flux
tower site (n = 3,203 days).

To calculate the overall summary statistics in
Tables 3 and 4 for slope, MBE, MAE, and RMSE, we
calculated a weighted mean value for each statistic
from the 23 (monthly) or 24 (daily) flux tower sites
using the square roots of sample size (

p
n) of each

site following Obrecht (2019). This weighting was
applied to reduce the greater influence of sites that
had longer periods of record, and to ensure that
model performance at all sites contributed to the
overall result summaries. Since a weighted mean of
r2 values is difficult to interpret, we calculated the
overall r2 value by pooling data from all sites and
applying a weighting to each data point based on the
ratio

ffiffiffi

n
p

=n, and then calculating the r2 value from
the pooled data. Statistical summaries of the results
for each of the individual sites are also provided in
the Supporting Information. All statistics were calcu-
lated using the NumPy 1.17.2 (Harris et al. 2020)

TABLE 3. Summary of monthly accuracy assessment metrics for
Phase I of the intercomparison for 23 cropland sites for the
weighted monthly mean ET. The dataset included 1,307 total
months and the mean monthly station ET across all 23 sites was
82.62 mm/month. Results are shown for the ensemble mean ET
and the range across individual models included in the ensemble.

Ensemble
mean

Range across individual
models

Slope (though origin) 0.95 0.86 to 1.02
MBE (mm/month) −2.3 −12.9 to 3.8
MAE (mm/month) 13.6 15.5 to 21.6
RMSE (mm/month) 17.4 20.9 to 27.4
r2 0.96 0.89 to 0.94

Notes: ET, evapotranspiration; MAE; mean absolute error; MBE,
mean bias error; r2, coefficient of determination; RMSE, root mean
squared error.

TABLE 4. Summary of daily accuracy assessment metrics for
Phase I of the intercomparison for 24 cropland sites for the
weighted daily mean ET. The dataset included 3,203 days and the
mean daily station ET across all 24 sites was 3.39 mm/day. Results
are shown for the ensemble mean ET and the range across individ-
ual models included in the ensemble.

Ensemble
mean

Range across individual
models

Slope (though origin) 0.90 0.81 to 0.96
MBE (mm/day) −0.20 −0.57 to 0.02
MAE (mm/day) 0.74 0.85 to 1.07
RMSE (mm/day) 0.96 1.12 to 1.39
r2 0.84 0.69 to 0.78
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and SciPy 1.3.2 (Virtanen et al. 2020) Python
libraries.

The results summarized in Table 3 show strong
overall agreement with the flux tower ET for all mod-
els and the ensemble mean. The slopes of the best fit
lines through the origin range from 0.86 to 1.02, with
a slope of 0.95 for the ensemble mean, and the MBE
for the ensemble mean is only −2.3 mm/month over-
all. The MAE for the ensemble mean is
13.6 mm/month (equivalent to an average of
0.45 mm/day), and results for individual models
range from 15.5 to 21.6 mm/month (equivalent to
0.51–0.72 mm/day). RMSE values, which are more
strongly influenced by outlier values from each
model, are 17.4 mm/month (equivalent to
0.58 mm/day) for the ensemble mean and range from
20.9 to 27.4 mm/month (equivalent to 0.70–
0.91 mm/day). r2 values show good correlation with
the flux tower ET for all models and range from 0.89
to 0.94 for the individual models, with a value of 0.96
for the ensemble mean. These summary statistics
indicate low bias errors overall, strong correlation
with the flux tower ET, and accuracies that are
within 13–30 mm/month of the flux tower ET data at
a monthly timestep.

Results for the daily data are summarized in
Table 4 and are similar to the monthly results. The
slopes of the best fit lines range from 0.81 to 0.96 for
the individual models, with a slope of 0.90 for the
ensemble mean. MBE values range from −0.57 to
0.02 mm/day, with a value of −0.20 mm/day for the
ensemble mean. MAE values range from 0.85 to
1.07 mm/day for the individual models, with a value
of 0.74 for the ensemble mean. RMSE values range
from 1.12 to 1.39 mm/day for the individual models,
with a value of 0.96 mm/day for the ensemble mean.
r2 values also show a good correlation with the flux
tower ET for all models and range from 0.69 to 0.78
for the individual models, with a value of 0.84 for the
ensemble mean. As expected with linear interpolation
of EToF between image dates, MAE and RMSE val-
ues increase slightly at a daily timestep, the r2 values
decrease, and the slopes of the best-fit lines move
away from the 1:1 line. However, taken together,
these summary statistics indicate low bias errors
overall, strong correlation with the flux tower ET at
both daily and monthly timesteps, and accuracies
that are within the range of 13–30 mm/month, and
0.7–1.4 mm/day.

Overall, the OpenET ensemble mean performs as
well or better than any individual model across most
accuracy metrics, with the lowest MAE and RMSE
values and the highest r2 at both daily and monthly
timesteps. The MAE for the mean of the model
ensemble as a percent of the monthly n-weighted flux
tower ET is 16.4% at a monthly timestep, and 21.8%

at a daily timestep. For reference, members of the
OpenET user working groups (described below) speci-
fied an error of �10%–20% as the accuracy target for
ET data at a monthly timestep, and �15%–25% as
the accuracy target for daily ET data. It is notewor-
thy that the MAE and RMSE values for the ensemble
mean are noticeably lower than the range of values
across the individual models. One reason for the
strong overall performance of the model ensemble is
that individual models may occasionally “miss” and
provide ET values that differ substantially from the
flux tower ET or other reference dataset. This can be
due to data quality issues in input data or physical
conditions that depart from the model assumptions.
However, since the ensemble value is currently calcu-
lated as the mean of all models, and due to the differ-
ent designs of the models, errors from any one model
are dampened in the ensemble mean, resulting in
fewer large “misses” and lower MAE and RMSE val-
ues for the ensemble mean.

Of the 24 cropland sites included in Phase I, 15
sites had sufficient data to calculate ET for one or
more complete growing seasons and 10 sites had suf-
ficient data to calculate ET for one or more complete
water years. Results for the total growing season ET
are summarized in Figure 1, and results for the
water year are summarized in Figure 2. For this
analysis, we used gridMET climate data (Abatzoglou
2013) from 1980 to 2020 to define the mean annual
start and end dates of the growing season at each
ground-based ET station. We used 300°C cumulative
degree days to define the start date of the growing
season, and the first −2°C killing frost to determine
the end date. Degree days used daily average temper-
ature, and minimum daily temperatures were used to
define the killing frost date (Huntington and Allen
2010). Monthly ET was used to sum annual growing
season totals by rounding growing season start and
end dates to the nearest month, and only years with-
out any monthly gaps for the full growing season
were included. Results were weighted by the square
root of the sample size (in total growing seasons or
years) for each site.

Figure 1 illustrates two important findings from
Phase I of the OpenET intercomparison. First, the
ensemble square root of n-weighted mean growing
season ET is within 3 mm (0.5%) of the flux tower ET
(601 mm/growing season). Second, all but one of the
models are within �8% of both the ensemble mean
and the flux tower ET, and all models are within
�15%, illustrating good overall agreement across the
ensemble of models, and very good agreement with
flux tower measurements at seasonal timesteps. In
addition, the range between the ET calculated from
the closed and unclosed energy balance provides one
measure of the uncertainty in the ET calculated from
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the flux tower measurements (Stoy et al. 2013). No
models from the OpenET ensemble fall below the
weighted mean ET calculated from the unclosed
energy balance. DisALEXI, geeSEBAL, and the
ensemble mean fall within the range between the
closed and unclosed energy balance models.
eeMETRIC, PT-JPL, SIMS, and SSEBop are greater
than the closed energy balance ET but within 8%
(47 mm) of the closed flux tower ET.

Results for the total ET for the water year are
summarized in Figure 2. Values for each site were
again weighted by the square root of the sample size

(i.e., the number of years) for each site to account for
variability in the length of the data records. Results
follow similar patterns to the results shown in Fig-
ure 1. All but one of the models are within �7%
(68 mm/year) of both the ensemble mean ET
(930 mm) and the closed flux tower n-weighted mean
annual ET (983 mm/year). The ensemble mean,
eeMETRIC, PT-JPL, SIMS, and SSEBop are all
within 5% (53 mm/year) of the closed flux tower ET.
Four of the models and the ensemble mean fall
between the ET values calculated from the closed and
unclosed energy balance, and SIMS is slightly higher

FIGURE 2. Total annual water year n-weighted mean ET for cropland sites (n = 10 with 23 total site-years) for six satellite-driven ET
models, the ensemble mean ET, and ET calculated from the closed and unclosed energy balances at each flux tower site.

FIGURE 1. Total growing season weighted mean ET (n = 15 sites with 40 total growing seasons) for six satellite-driven ET models, the
ensemble mean ET, and ET calculated from the closed and unclosed energy balances at each flux tower site.
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but within 1% (12 mm) of the ET calculated from the
closed energy balance.

To illustrate the performance of the individual
models and the model ensemble over specific sites,
Figures 3–5 provide scatter plots and time series
graphs for representative crops including a rainfed
maize-soybean rotation (Ameriflux site US-Ne3,
Nebraska), a flood-irrigated alfalfa (Ameriflux site
US-Tw3, California) and an almond orchard irrigated
with dripline emitters (Ameriflux site US-ASH USSL,
California).

Results shown in the example Figures 3–5 provide
evidence of good agreement across the model ensem-
ble and generally close agreement of the individual
models with the closed flux tower ET. For the rainfed
maize-soybean rotation in Nebraska (Suyker 2001),
the slopes of the best fit lines for each model range
from 0.85 to 1.11, r2 values range from 0.76 to 0.88,
and RMSE values range from 18.2 to 28.2 mm/month.
The ensemble mean monthly ET calculated from the

six models has a slope of 0.98, r2 value of 0.91 and
the lowest overall RMSE of 16.0 mm/month. All mod-
els follow the seasonal time series of flux tower ET
closely, although some models overestimate monthly
ET values in July in some years (Figure 3).

Figure 4 illustrates similar results from the irri-
gated alfalfa site in the San Francisco Bay-Delta
(Chamberlain et al. 2013–2018), although with a
wider range across the model ensemble. The slopes of
the best fit lines range from 0.69 to 1.12, r2 values
range from 0.85 to 0.96, and RMSE values range
from 15.4 to 36.6 mm/month. Despite the wider range
in ET estimates from individual models, the ensemble
mean again shows good agreement with the flux
tower ET, with a slope of the best fit line of 0.92,
RMSE value of 13.5 mm/month, and an r2 value of
0.96. Despite the overall good agreement, this site
illustrates how a negative bias in one or more models
in the ensemble can also impact the ensemble ET
value. In addition, the ability to compare ET models

FIGURE 3. Comparisons between the monthly ET from the OpenET ensemble of models and the flux tower ET for a nonirrigated, rainfed
field in Mead, Nebraska with a maize-soybean rotation (Suyker 2001), shown as a scatter plot (a) and a time series graph (b). The average
daily energy balance closure at this site was 0.87, and the shaded area between the dashed lines in (b) represents the range between the ET
calculated from the unclosed energy balance (gray dashed line) and the closed energy balance (black dashed line) from the flux tower mea-
surements.
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across a wide range of sites has allowed the team to
identify the strengths of each model, as well as situa-
tions in which each model may have consistent
biases. Phase II of the accuracy assessment will
explore techniques for identifying and removing out-
liers to reduce bias in the ensemble ET value, but
when the range of ET values across the ensemble is
large, it may be difficult to fully eliminate positive or
negative biases introduced by one or more models in
the ensemble.

Results from the almond orchard site in the south-
ern San Joaquin Valley are shown in Figure 5,
demonstrating very good agreement between the ET
values from all the satellite-driven models and the
flux tower ET. For the individual models, the slopes
of the best fit lines range from 0.87 to 0.97, r2 values
range from 0.89 to 0.92, and RMSE values range
from 22.9 to 28.6 mm/month. The ensemble mean ET
also performs very well at this site, with a slope of
the best fit line of 0.93, RMSE of 24.0 mm/month,
and r2 value of 0.91. The time series graph shown in

Figure 5b also illustrates how well the satellite-based
ET tracks the flux tower ET at this site overall.

While the results of the Phase I intercomparison
and accuracy assessment demonstrate that the mod-
els are already performing well for cropland sites, fol-
lowing the completion of additional model
improvements, there may be further increases in
model accuracy metrics. Results for the other individ-
ual cropland sites included in Phase I are consistent
with the three examples above, and tables listing
daily and monthly summary statistics for individual
sites are provided in the Supporting Information.
Generally, there is good agreement across models,
and the majority of models compare well with the
flux tower ET. Phase II of the accuracy assessment
will extend the findings of the intercomparison and
accuracy assessment to include other land cover
types. In addition, results from Phase II will be used
to evaluate and select methods for outlier detection
and removal, and calculation of the ensemble ET
value. Results will also inform decisions about the

FIGURE 4. Comparisons between the ET from the OpenET ensemble of models and the flux tower ET for an irrigated alfalfa field in the
San Francisco Bay-Delta, California (Chamberlain et al. 2013–2018), shown as a scatter plot (a) and a time series graph (b). The average
daily energy balance closure at this site was 0.85, and the shaded area between the dashed lines in (b) represents the range between the ET
calculated from the unclosed energy balance (gray dashed line) and the closed energy balance (black dashed line) from the flux tower mea-
surements.
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use of a subset of models, or even a single model, for
particular regions or land cover types to minimize the
influence of persistent biases in one or more models
on the ensemble ET value.

OPENET ARCHITECTURE

OpenET builds upon decades of investment by
NASA, USGS, NOAA, and the European Space
Agency (ESA) to develop, launch, and operate a con-
stellation of Earth observing satellites and to develop
the ground data systems required to capture, process,
store, and distribute satellite data freely to the pub-
lic. The project is leveraging past work to develop
gridded meteorological datasets used to calculate ref-
erence ET and produce and distribute these data
operationally (Hart et al. 2009; Abatzoglou 2013).
OpenET uses the Google Earth Engine platform

(Gorelick et al. 2017) as a shared cloud-computing
platform that allows teams from multiple federal
agencies and university research institutions to col-
laborate on the development of the OpenET software
architecture. An overview of the major components of
the OpenET architecture is provided in Figure 6.
OpenET models use satellite, meteorological, climate,
and land use data stored in the Earth Engine data
catalog, which increases the consistency of prepro-
cessing of data inputs that are common across multi-
ple models and facilitates intercomparison of model
results. This allows the OpenET team to reduce dif-
ferences in ET estimates across the model ensemble
that are due solely to differences in gap-filling algo-
rithms or approaches used for time integration
between satellite overpasses. Model outputs from
individual Landsat scenes for each model are stored
on Earth Engine as raster assets, as are the time-
integrated data for monthly and annual total ET
datasets.

FIGURE 5. Comparisons between the ET from the OpenET ensemble of models and the flux tower ET for an irrigated almond orchard in
the San Joaquin Valley, California (Anderson 2016), shown as a scatter plot (a) and a time series graph (b). The average daily energy balance
closure at this site was 0.83, and the shaded area between the dashed lines in (b) represents the range between the ET calculated from the
unclosed energy balance (gray dashed line) and the closed energy balance (black dashed line) from the flux tower measurements.
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In addition to gridded, raster data archives,
OpenET includes a PostGIS database (Obe and Hsu
2011) to store time series of ET data for individual
polygons. The database is designed to include field
boundaries, watersheds, irrigation district bound-
aries, locations for riparian vegetation or invasive
species, and other geometries. Publicly available field
boundary datasets have been compiled from state
agencies as well as from the 2008 USDA Common
Land Unit (CLU) database. Priority is given to more
recent field boundary datasets produced by each
state, and the CLU data are used only in cases where
no state or local level datasets are publicly available.
These datasets have been filtered to remove overlap-
ping and redundant polygons, as well as very small
slivers (<0.25 acres) and very large polygons associ-
ated with grazing on nonirrigated rangelands and
shrublands. Using Earth Engine, time series of ET
are calculated from the gridded, 30 m datasets for
each model and for each polygon and stored in the
geodatabase, facilitating rapid retrieval and analysis.
Crop type information for each year is calculated for
each field boundary from the USDA CDL (Boryan
et al. 2011) based on the mode and is stored in the
geodatabase.

OpenET includes a Data Explorer (Figure 7) that
provides a web-based graphical user interface (UI)
allowing users to easily explore and query ET data
across the western U.S. for any field or location of
interest. The web UI is based on Leaflet for mapping
functionality, JQuery (Severance 2015) for front-end
interactive features, and HighCharts (Kuan 2012) for
interactive generation of graphs. OpenET provides
access to both spatially continuous gridded datasets
and choropleth maps that summarize data to individ-
ual field boundaries. The web UI displays monthly
time series of data for each field (Figure 9). Clicking
on the field opens an interface that allows the user to
plot monthly and cumulative annual time series for
the past five years and the current year, and to plot
the data for the ensemble ET value or for individual
models (Figure 9). The UI also allows the user to plot
reference ET, fraction of reference ET, and NDVI as
complementary and diagnostic datasets to assist in
evaluating the ET time series. The UI allows the user
to view and download graphs, along with the data
used to generate the graphs.

OpenET also allows users to view and query the
data as raster maps at the original satellite resolu-
tion (30 × 30 m) and draw geometries on the data to
define and query regions of interest. Using the
OpenET Reporting UI, users will also be able to
upload shapefiles to define regions of interest, and
specify the models, variables, and time periods of
interest and generate custom reports for locations in
the western U.S. using secure, private accounts that
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are protected from access by other users. Finally,
OpenET provides an API that enables access to data
services via scripted, automated machine-to-machine
queries to facilitate the integration of data from
OpenET within applications for irrigation scheduling,
farm management, or water resources reporting,
administration and management. The API follows the
OpenAPI standard and currently uses SWAGGER.IO
for API documentation and to provide a graphical UI
for the API.

USER-DRIVEN DESIGN AND USE CASES

The design and development of OpenET has been
user-driven from the outset to ensure that the plat-
form meets a range of user requirements and pro-
vides utility for a broad range of water users and
decision-makers. To define user requirements and
demonstrate the value of OpenET for supporting sus-
tainable land and water management practices, the
team has developed a set of Use Case partnerships
that represent a diversity of potential users and

applications. The Use Case partnerships include
growers and agricultural interest groups making irri-
gation management and other decisions at the field
scale, water district managers building water
accounting and trading platforms, and even broader
drought and supply and demand assessments by
state and federal agencies at larger scales. OpenET
has convened representatives from state and federal
agencies, policymakers, NGOs, farmers and agricul-
tural companies, and other practitioners into geo-
graphically focused Working Groups to ensure that
the team receives input from a broad range of per-
spectives. Through semi-structured interviews, quar-
terly webinars, and annual workshops, the team
solicits feedback on topics including the UI design;
spatial, temporal, and accuracy requirements; and
outreach opportunities.

In total, OpenET developed more than a dozen use
cases to inform the design of the platform, UI, and
the data services available through the API. The fol-
lowing use cases from California and Colorado pro-
vide examples that illustrate a common need for
transparent, credible, and easily accessible ET data
across a variety of purposes (Figure 8). First, the
Rosedale-Rio Bravo Water Storage District (Rosedale)

FIGURE 7. The OpenET Data Explorer showing data for fields across the western United States (U.S.), and a close-up view for individual
fields near Diamond Valley, Nevada.
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serves landowners on 17,800 ha (44,000 acres) in the
critically overdrafted Kern Basin in California.
Unlike many other districts in the area, nearly all of
Rosedale’s water supplies are used to recharge the
groundwater aquifer (Christian-Smith 2013). Under
California’s Sustainable Groundwater Management
Act, Rosedale has developed a Groundwater Sustain-
ability Plan (GSP) to balance its supply and demand
within 20 years. Data from OpenET and other
sources are important for Rosedale at both the parcel
level for irrigation and crop management, and at the
subbasin scale for implementation of their open-
source water accounting platform. The platform,
launched in Spring 2020, allows growers to more
accurately track their agricultural water usage and
consumption, and serves as a foundation to launch a
regional water trading program. The ability of grow-
ers to buy and sell water from one another can accel-
erate the adoption of a wide range of innovative
water management practices and reduce the eco-
nomic impacts of drought on agricultural producers
(Connell 2015). Currently, the Rosedale-Rio Bravo
Water Accounting Platform uses the OpenET API to
retrieve monthly total ensemble ET data for every

parcel in the district via automated queries to the
API. The information is stored within the Water
Accounting Platform and distributed to growers and
landowners in the district via a web dashboard,
allowing them to track water usage against their
annual allocation. In the future, these data will also
serve as the basis for supporting water trades within
the district during times of water shortage, allowing
growers to sustain crop production while meeting the
goals of the GSP.

In the Upper Colorado River Basin, OpenET is cur-
rently being used to address several priority ques-
tions related to demand management, including
evaluating the potential water conservation and agro-
nomic viability for reducing irrigation on high-
altitude irrigated pasture. This use case brings
together expertise from OpenET, American Rivers,
Trout Unlimited, Colorado State University, Utah
State University, The Nature Conservancy, and agri-
cultural producers in the region around Kremmling,
Colorado. Data from OpenET are currently being
used to compare water savings on parcels with zero
or partial irrigation relative to reference parcels with
normal irrigation. Through this use case, the team is

FIGURE 8. Examples of use cases and partners that are currently testing data from OpenET across the West.
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working to answer questions regarding how varia-
tions in forage species, soil, and groundwater condi-
tions might affect consumptive use. Data from
OpenET are valuable because they provide a consis-
tent reference across the study area and can provide
historic data to characterize baseline conditions over
a range of time periods. In addition, OpenET is able
to measure the change in consumptive use for each
parcel, which is especially important for sites that
are adjacent to riparian corridors where pasture
grasses may have access to shallow groundwater. In
these situations, it is possible for fields to have mod-
erate levels of ET even without irrigation, limiting
the value of metering applied irrigation water for
evaluating the effects of different irrigation treat-
ments on consumptive use. As stakeholders in the
Upper Basin explore the feasibility of demand man-
agement programs, this use case provides information
to address important questions about measuring and
verifying water conservation, understanding agro-
nomic impacts of reduced irrigation, integrating com-
pensation for reduced water use with existing
agricultural operations, and evaluating environmen-
tal aspects and tradeoffs associated with alternative
strategies. An example is shown in Figures 9 and 10
for a field in Kremmling, Colorado. Monthly and

annual ET rates for this grass pasture (and adjacent
irrigated pastures) were consistent from 2016 to 2019
(Figure 9), with peak monthly ET rates of 148–
164 mm/month (5.8–6.5 in./month) and annual ET
rates of 667–696 mm/year (26.3–27.4 in./year) (Fig-
ure 10). In 2020, the grower participated in a pilot
demand management program and heavily reduced
irrigation on this pasture, and as shown in Figure 10,
there was a substantial reduction in ET to 449 mm/
year (17.7 in./year). In contrast, ET for adjacent fields
and reference fields in 2020 remained within the
range observed for 2016–2019. The ability for both
agricultural producers and program administrators to
quickly and easily evaluate changes in ET associated
with the implementation of demand management
programs is an important prerequisite for expanded
use of demand management across the Upper Color-
ado River Basin under the Drought Contingency
Plans for the Basin.

A third use case is in the Sacramento-San Joaquin
Delta, where significant portions of the agricultural
acreage lie below the external surface water level, so
that irrigation water is diverted out of the surround-
ing channels and onto agricultural lands in the Delta,
primarily with siphons. Like other diverters across
California, Delta landowners are faced with the

FIGURE 9. Time series of monthly ET data are easily accessible and viewable for agricultural fields across the western U.S. An example is
shown for a field (white box) in Kremmling, Colorado based on the ensemble mean of all OpenET methods, illustrating reduced ET in 2020

as a result of participation by the grower in a demand management trial.
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difficult task of finding a cost-effective way to comply
with California’s Senate Bill 88, a regulation that
requires monitoring and reporting of all diversions
exceeding 12,335 m3 (10 acre-feet) per year. OpenET
is providing growers in the Delta with a consistent,
dependable way to accurately estimate and report
consumptive water use. This is viewed as a signifi-
cant improvement over the high cost of installing
meters at every point of diversion and return flow, as
is currently required by the regulations implementing
SB88. For this use case, a key strength of OpenET is
the ability to provide a single value from the ensem-
ble of ET models that represents a consensus esti-
mate from the scientific community. At the same
time, users can assess agreement across the full
ensemble as an indicator of expected uncertainty in
the ET data. An example time series for a single field
in the Delta is shown in Figure 11, with data shown
for the ensemble ET value and all individual models.

The Delta Measurement Consortium, which
includes water contractors, farmers, conservation
groups and representatives from the California State
Water Resources Control Board, has reviewed data
from OpenET and selected OpenET data as the basis
for a Delta-wide alternative compliance plan for
SB88, as allowed for under the original legislation.

Under the alternative plan of compliance, data from
OpenET would be used as a “rebuttable presump-
tion,” allowing the grower or landowner to accept the
ET data from OpenET or submit documentation from
flow meters if preferred.

Through these use cases and others, partners have
recommended features and functionality for the
OpenET Data Explorer and API, identified concerns
from agricultural producers about data privacy and
worked with the team to resolve these concerns, and
clearly communicated the advantage of providing a
single ET value from the ensemble of models. The
insights and recommendations provided through
these partnerships are integral to the success of
OpenET.

CHALLENGES AND LIMITATIONS OF OPENET

Operational production of ET data across the west-
ern U.S. at a spatial resolution of 30 m requires pro-
cessing of tens of thousands of satellite scenes per
year. This inherently requires full automation of both
the models and the preprocessing of satellite and

FIGURE 10. Cumulative total ET data can also be easily accessed and displayed facilitating evaluation of changes in annual ET and
consumptive use. Example shown for a field (white box) in Kremmling, Colorado, illustrating a reduction in ET in 2020 when the field was

enrolled in a pilot demand management program.
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meteorological data inputs. While OpenET includes
automated QAQC procedures, and each model con-
tains its own internal automated calibration and
QAQC routines, it is not possible for OpenET to pro-
vide the same level of data review and adjustment as
may typically be done by a qualified expert analyzing
data over a limited region using a supervised model-
ing approach. An important strength of the ensemble
approach is that the full ensemble can be used to
identify outlier values and compensate for some of
the occasional errors that may occur from a single
model. In addition, OpenET is developing a Best
Practices Manual to guide users in understanding
the strengths and limitations of data produced by
OpenET and identifying appropriate applications of
the data. However, as with all satellite-derived ET
data, careful review by users prior to incorporation
into water management applications is recommended,
especially in applications that pertain to administra-
tion of water rights.

An important challenge for OpenET is the reliance
upon daily reference ET information derived from
gridded weather data and networks of agricultural
weather stations. Daily weather data from the grid-
MET dataset are bias-corrected for aridity impacts

(ASCE-EWRI 2005) and for wind speed bias using
hundreds of agricultural weather stations as a basis.
Many of the agricultural weather networks in the
western U.S. are operated by small teams of dedi-
cated staff or by agricultural organizations on a vol-
untary basis in partnership with state and federal
agencies. As such, these networks and data products
are subject to their own errors and biases (Allen
1996; ASCE-EWRI 2005; ASCE 2016) that can affect
the appropriateness of the gridMET bias corrections
and, ultimately, the final ET data produced by
OpenET. The OpenET framework includes QAQC
procedures to identify and flag errors and biases, but
the reliance on reference ET datasets and an under-
standing of the limitations of these datasets in some
parts of the western U.S. are important to acknowl-
edge. Future investments in additional agricultural
weather stations, and financial support for mainte-
nance of the stations and data systems, is a high pri-
ority for further improvements to the overall
accuracy of ET data in the western U.S.

Finally, it is important to recognize that while the
OpenET team is undertaking one of the largest and
most rigorous ET intercomparison efforts conducted
to date, the analyses will use 139 stations to assess

FIGURE 11. OpenET allows users to access data for the ensemble mean (black line), model range after excluding outliers (shaded area), and
results from individual models (red, green, light blue, brown, yellow and dark blue lines). An example is shown for a corn field (white box) in

the San Francisco Bay Delta where the ability to provide a single ensemble value for ET is a key requirement for operational use.
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the overall accuracy of ET data representing millions
of acres of land in the western U.S. Fortunately, the
stations span a diverse range of crop types and natu-
ral ecosystems, providing a robust assessment of
model accuracy. However, while potential errors in
the flux tower datasets were accounted for by closing
the energy balance, uncertainties in ground-based ET
estimates remain. Allen et al. (2011) suggested an
expected accuracy for EC systems of 10-30% depend-
ing on the experience of the operator and frequency
of maintenance of the instruments. The assessment
of the overall accuracy of the ET data from OpenET
at daily and monthly timesteps is limited, in part, by
the accuracy and availability of ground-based ET
datasets. Collection of additional ground-based ET
datasets using carefully maintained and well-
calibrated instruments for a wide range of agricul-
tural crops and natural ecosystems will be important
in the future to assessing and improving the accuracy
of remotely sensed ET data from OpenET and other
efforts.

DATA AVAILABILITY AND TIMELINE

OpenET has released the OpenET Data Explorer
for use by the public, and the API is currently being
evaluated and tested by use-case partners. The Data
Explorer and API provide access to 30 m resolution
data for the 17 western states within the contiguous
U.S. for the period from 2016 to present. In the near
future, OpenET will also release the Reporting Inter-
face, along with the API and OpenET Best Practices
manual, and will make data from the OpenET grid-
ded raster data archives available in the Earth
Engine data catalog. OpenET is currently working to
produce retrospective data from 2006 to 2015, with
the potential to extend the data record back to 1984
— the start of the Landsat 5 data record.

THE VALUE OF A COMMUNITY EFFORT

As previously described, a key objective of the
OpenET effort is to enhance ready access to spatial
ET data and to accelerate use of ET data in water
management by public and private entities at local,
state, and federal levels. Additional important objec-
tives of OpenET are to increase transparency and
understanding of the strengths and weaknesses of
remotely sensed ET data, increase understanding of

the different approaches to ET mapping, and to iden-
tify and minimize errors and biases in all ET map-
ping approaches used within the OpenET framework.
Participation of a sizable community of scientists
working collaboratively has been essential to achiev-
ing these goals. The development of an ensemble
value that is endorsed by a community of scientists is
difficult to achieve without collaboration and a shared
commitment to the common goal of making field-scale
ET data operationally available and readily usable
for a wide range of applications. In addition, a com-
munity effort should build confidence in the data by
identifying and potentially reducing the range in ET
estimates across the ensemble, identifying and
explaining differences between models, and working
toward a jointly conducted intercomparison and accu-
racy assessment. A manual of Best Practices for
Application of Remotely Sensed ET Data that has
been reviewed and endorsed by the research commu-
nity is expected to gain widespread adoption and use.

OpenET makes it possible to readily compare ET
models at scale, allowing the identification of consis-
tent differences between the various models and
approaches. In some cases, modeling teams can take
steps to evolve individual models and resolve differ-
ences. In other cases, the discrepancies in ET esti-
mates may be due to inherent differences in the ways
the models represent physical processes and deter-
mine most probable values for ET. However, compar-
isons at scale allow the teams to identify, document,
and explain these differences. Working together, the
OpenET team is comparing preprocessing routines,
gap-filling techniques, and time integration strate-
gies. Driving all models with the community-selected
best available inputs and community-reviewed pre-
processing algorithms increases consistency in the ET
data and reduces the range of ET values across the
full ensemble. It is important to acknowledge that
this community effort was made possible through
support from the funding partners. The intentional
programmatic effort on the part of these funders to
encourage collaboration and support a community
effort to build OpenET is central to the progress
achieved by OpenET to date.

TRANSITION TO LONG-TERM OPERATIONS

OpenET initiated work on planning for transition
to long-term operations in the second year of the pro-
ject, in recognition of the lead-times required to
ensure funding support and operational continuity
for an effort involving dozens of scientists and
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software engineers. The development team worked
closely with a diverse range of advisors and use case
partners to develop a transition plan that will be
implemented over a two-year period. OpenET is cur-
rently exploring a strategy that involves both a non-
profit organization and a public-benefit corporation or
commercial entity. The nonprofit would host and
manage the core datasets, software repositories and
API, and provide training and support for OpenET
users. The public-benefit corporation or commercial
entity would scale as needed to provide custom soft-
ware development, data analysis, and consulting ser-
vices for the integration of the data with commercial
applications.

A key goal of the transition strategy is to ensure
that OpenET will be able to technically and finan-
cially sustain the availability of the datasets, UIs,
and web data services for the foreseeable future.
OpenET will need to maintain the models and docu-
mentation, and work with the science community to
identify potential improvements to the models, test
and vet these proposed improvements, and integrate
them into the operational versions that are running
on the OpenET platform. New models and technologi-
cal advances in remote sensing of ET will need to be
evaluated and incorporated into OpenET in the
future. The OpenET team hopes to attract future
funding support from agencies, organizations, and
foundations who benefit from the ET data directly, or
who benefit from the improvements in water manage-
ment that stem from access to the ET data.

CONCLUSIONS

As farmers and water managers across the western
U.S. are working to respond to growing constraints
and increasing interannual variability in water sup-
plies, the lack of accurate, consistent, and easily
accessible information on ET and consumptive use
has emerged as one of the biggest data gaps in the
U.S. and around the globe. OpenET has employed a
user-driven design approach to develop an operational
system for field-scale ET mapping across the western
U.S. OpenET is built upon the Google Earth Engine
platform using open source software tools to increase
transparency and facilitate collaboration across three
federal agencies, six ET modeling teams, and a wide
range of public and private entities collaborating with
OpenET as use case partners and advisors. The use
of Google Earth Engine facilitates scaling of the
OpenET geographic domain to other regions in the
future.

The collaborative, community-driven effort has
accelerated progress on the alignment of model inputs
and preprocessing routines, and initiation of a joint
model intercomparison and accuracy assessment. The
ability to easily compare model results at scale has
accelerated the ability of the ET modeling community
to identify and understand differences across the
ensemble of approaches used by OpenET. Results from
Phase I of the intercomparison and accuracy
assessment demonstrate strong agreement between
the satellite-driven ET models and the flux tower ET
data across all accuracy statistics evaluated. Overall,
the ensemble mean performs as well as any individ-
ual model across nearly all accuracy statistics, and
the MAE for the ensemble mean is 16.4%
(13.6 mm/month) at a monthly timestep and 21.8%
(0.74 mm/day) at a daily timestep. The results from
Phase II of the ongoing intercomparison study will
inform the procedures used to calculate the final model
ensemble value, as well as the recommendations in
the Best Practices Manual that will accompany the
OpenET documentation. The collaborative, user-
driven approach adopted by OpenET may also serve as
a reference in the future for teams working to develop
analogous systems for remotely sensed measures of
soil moisture and groundwater, or to implement and
test new approaches to sub-seasonal to seasonal fore-
casts of precipitation.

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: The Supporting Information includes tables
that provide details for each flux measurement site,
along with daily and monthly summary statistics for
each site.
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