312 research outputs found

    The effect of time-to-surgery on outcome in elderly patients with proximal femoral fractures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether reducing time-to-surgery for elderly patients suffering from hip fracture results in better outcomes remains subject to controversial debates.</p> <p>Methods</p> <p>As part of a prospective observational study conducted between January 2002 and September 2003 on hip-fracture patients from 268 acute-care hospitals all over Germany, we investigated the relationship of time-to-surgery with frequency of post-operative complications and one-year mortality in elderly patients (age ≥65) with isolated proximal femoral fracture (femoral neck fracture or pertrochanteric femoral fracture). Patients with short (≤12 h), medium (> 12 h to ≤36 h) and long (> 36 h) times-to-surgery, counting from the time of the fracture event, were compared for patient characteristics, operative procedures, post-operative complications and one-year mortality.</p> <p>Results</p> <p>Hospital data were available for 2916 hip-fracture patients (mean age (SD) in years: 82.1 (7.4), median age: 82; 79.7% women). Comparison of groups with short (n = 802), medium (n = 1191) and long (n = 923) time-to-surgery revealed statistically significant differences in a few patient characteristics (age, American Society of Anesthesiologists ratings classification and type of admission) and in operative procedures (total hip endoprosthesis, hemi-endoprosthetic implants, other osteosynthetic procedures). However, comparison of these same groups for frequency of postoperative complications revealed only some non-significant associations with certain complications such as post-operative bleeding requiring treatment (early surgery patients) and urinary tract infections (delayed surgery patients). Both unadjusted rates of one-year all-cause mortality (between 18.1% and 20.5%), and the multivariate-adjusted hazard ratios (HR for time-to-surgery: 1.04; p = 0.55) showed no association between mortality and time-to-surgery.</p> <p>Conclusion</p> <p>Although this study found a trend toward more frequent post-operative complications in the longest time-to-surgery group, there was no effect of time-to-surgery on mortality. Shorter time-to-surgery may be associated with somewhat lower rates of post-operative complications such as decubitus ulcers, urinary tract infections, thromboses, pneumonia and cardiovascular events, and with somewhat higher rates of others such as post-operative bleeding or implant complications.</p

    Saliva Proteins of Vector Culicoides Modify Structure and Infectivity of Bluetongue Virus Particles

    Get PDF
    Bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) are related orbiviruses, transmitted between their ruminant hosts primarily by certain haematophagous midge vectors (Culicoides spp.). The larger of the BTV outer-capsid proteins, ‘VP2’, can be cleaved by proteases (including trypsin or chymotrypsin), forming infectious subviral particles (ISVP) which have enhanced infectivity for adult Culicoides, or KC cells (a cell-line derived from C. sonorensis). We demonstrate that VP2 present on purified virus particles from 3 different BTV strains can also be cleaved by treatment with saliva from adult Culicoides. The saliva proteins from C. sonorensis (a competent BTV vector), cleaved BTV-VP2 more efficiently than those from C. nubeculosus (a less competent / non-vector species). Electrophoresis and mass spectrometry identified a trypsin-like protease in C. sonorensis saliva, which was significantly reduced or absent from C. nubeculosus saliva. Incubating purified BTV-1 with C. sonorensis saliva proteins also increased their infectivity for KC cells ∼10 fold, while infectivity for BHK cells was reduced by 2–6 fold. Treatment of an ‘eastern’ strain of EHDV-2 with saliva proteins of either C. sonorensis or C. nubeculosus cleaved VP2, but a ‘western’ strain of EHDV-2 remained unmodified. These results indicate that temperature, strain of virus and protein composition of Culicoides saliva (particularly its protease content which is dependent upon vector species), can all play a significant role in the efficiency of VP2 cleavage, influencing virus infectivity. Saliva of several other arthropod species has previously been shown to increase transmission, infectivity and virulence of certain arboviruses, by modulating and/or suppressing the mammalian immune response. The findings presented here, however, demonstrate a novel mechanism by which proteases in Culicoides saliva can also directly modify the orbivirus particle structure, leading to increased infectivity specifically for Culicoides cells and, in turn, efficiency of transmission to the insect vector

    NGF Causes TrkA to Specifically Attract Microtubules to Lipid Rafts

    Get PDF
    Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75NTR collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75NTR both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75NTR. When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75NTR, was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75NTR partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance

    Nucleotide-Oligomerization-Domain-2 Affects Commensal Gut Microbiota Composition and Intracerebral Immunopathology in Acute Toxoplasma gondii Induced Murine Ileitis

    Get PDF
    Background Within one week following peroral high dose infection with Toxoplasma (T.) gondii, susceptible mice develop non-selflimiting acute ileitis due to an underlying Th1-type immunopathology. The role of the innate immune receptor nucleotide-oligomerization-domain-2 (NOD2) in mediating potential extra-intestinal inflammatory sequelae including the brain, however, has not been investigated so far. Methodology/Principal Findings Following peroral infection with 100 cysts of T. gondii strain ME49, NOD2-/- mice displayed more severe ileitis and higher small intestinal parasitic loads as compared to wildtype (WT) mice. However, systemic (i.e. splenic) levels of pro-inflammatory cytokines such as TNF-α and IFN-γ were lower in NOD2-/- mice versus WT controls at day 7 p.i. Given that the immunopathological outcome might be influenced by the intestinal microbiota composition, which is shaped by NOD2, we performed a quantitative survey of main intestinal bacterial groups by 16S rRNA analysis. Interestingly, Bifidobacteria were virtually absent in NOD2-/- but not WT mice, whereas differences in remaining bacterial species were rather subtle. Interestingly, more distinct intestinal inflammation was accompanied by higher bacterial translocation rates to extra- intestinal tissue sites such as liver, spleen, and kidneys in T. gondii infected NOD2-/- mice. Strikingly, intracerebral inflammatory foci could be observed as early as seven days following T. gondii infection irrespective of the genotype of animals, whereas NOD2-/- mice exhibited higher intracerebral parasitic loads, higher F4/80 positive macrophage and microglia numbers as well as higher IFN-γ mRNA expression levels as compared to WT control animals. Conclusion/Significance NOD2 signaling is involved in protection of mice from T. gondii induced acute ileitis. The parasite-induced Th1-type immunopathology at intestinal as well as extra-intestinal sites including the brain is modulated in a NOD2-dependent manner

    Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams

    Get PDF
    The present study addresses the effect of heat stress on males' reproduction ability. For that, we have evaluated the sperm DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37°C during 0, 24 and 48 hours after its collection, as a way to mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined. To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males with alternative genotypes for the SNP G/C−660 of the HSP90AA1 promoter, which encode for the Hsp90α protein. The Hsp90α protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species. Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of 30°C for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG−660 genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90α has been described in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in which the replacement of histones by protamines occurs. Because of GG−660 genotype has been associated to lower levels of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG−660 animals under heat stress conditions make spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG−660 genotype could decrease the DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gainsPublishe

    Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics

    Get PDF
    The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative ‘lab on chip’ technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches

    Animal influence on water, sanitation and hygiene measures for zoonosis control at the household level: A systematic literature review

    Get PDF
    Neglected zoonotic diseases (NZDs) have a significant impact on the livelihoods of the world’s poorest populations, which often lack access to basic services. Water, sanitation and hygiene (WASH) programmes are included among the key strategies for achieving the World Health Organization’s 2020 Roadmap for Implementation for control of Neglected Tropical Diseases (NTDs). There exists a lack of knowledge regarding the effect of animals on the effectiveness of WASH measures. This review looked to identify how animal presence in the household influences the effectiveness of water, hygiene and sanitation measures for zoonotic disease control in low and middle income countries; to identify gaps of knowledge regarding this topic based on the amount and type of studies looking at this particular interaction

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore