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Abstract

Background: Within one week following peroral high dose infection with Toxoplasma (T.) gondii, susceptible mice develop
non-selflimiting acute ileitis due to an underlying Th1-type immunopathology. The role of the innate immune receptor
nucleotide-oligomerization-domain-2 (NOD2) in mediating potential extra-intestinal inflammatory sequelae including the
brain, however, has not been investigated so far.

Methodology/Principal Findings: Following peroral infection with 100 cysts of T. gondii strain ME49, NOD2-/- mice
displayed more severe ileitis and higher small intestinal parasitic loads as compared to wildtype (WT) mice. However,
systemic (i.e. splenic) levels of pro-inflammatory cytokines such as TNF-a and IFN-c were lower in NOD2-/- mice versus WT
controls at day 7 p.i. Given that the immunopathological outcome might be influenced by the intestinal microbiota
composition, which is shaped by NOD2, we performed a quantitative survey of main intestinal bacterial groups by 16S rRNA
analysis. Interestingly, Bifidobacteria were virtually absent in NOD2-/- but not WT mice, whereas differences in remaining
bacterial species were rather subtle. Interestingly, more distinct intestinal inflammation was accompanied by higher
bacterial translocation rates to extra-intestinal tissue sites such as liver, spleen, and kidneys in T. gondii infected NOD2-/-

mice. Strikingly, intracerebral inflammatory foci could be observed as early as seven days following T. gondii infection
irrespective of the genotype of animals, whereas NOD2-/- mice exhibited higher intracerebral parasitic loads, higher F4/80
positive macrophage and microglia numbers as well as higher IFN-c mRNA expression levels as compared to WT control
animals.

Conclusion/Significance: NOD2 signaling is involved in protection of mice from T. gondii induced acute ileitis. The parasite-
induced Th1-type immunopathology at intestinal as well as extra-intestinal sites including the brain is modulated in a
NOD2-dependent manner.
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Introduction

The obligate intracellular parasite Toxoplasma (T.) gondii
belongs to the Apicomplexa phylum and is widely used in distinct

murine models of infection [1]. Low dose (i.e. between 1 and 20

cysts) infection models mimic the course of human T. gondii
infection such as chronic Toxoplasma infection as well as

Toxoplasma encephalitis [1,2,3,4,5]. In addition, molecular

mechanisms underlying resistance of mice against oral T. gondii
infection and small intestinal inflammation, for instance, are

commonly studied in high dose infection with 50 to 100 cysts of a

type II strain [1,6,7]. Within one week following peroral infection

with 100 cysts of the T. gondii ME49 strain, susceptible animals
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such as C57BL/6 mice (with H-2b haplotype) develop a pan-

ileitis and succumb to the infection [1,2,8]. Acute ileitis is caused

by a Th1-type hyper-inflammatory response characterized by a

CD4+ T-cell mediated increase of pro-inflammatory cytokines

such as nitric oxide (NO), TNF-a and IFN-c, whereas T. gondii
induced counter-regulatory mediators include IL-10 [8,9].

Hence, the high dose infection model mimics some key features

of human inflammatory bowel diseases (IBD) such as Crohn’s

disease in the acute stage [1,10,11]. Furthermore, the ileal

immunopathology is associated with an overgrowth of the

intestinal microbiota with commensal Gram-negative bacterial

species such as E. coli which aggravate inflammation via toll-like

receptor (TLR) -4 mediated sensing of lipopolysaccharide

[1,11,12].

The nucleotide-binding oligomerization domain (NOD)-

like receptors act as intracellular pattern recognition

receptors and regulate host immunity by sensing microbial

products and damage-associated signals [13]. Among these,

NOD2 encoded by the card15 gene is expressed in dendritic

cells [14], macrophages [15], Paneth cells [16], epithelial

cells [17] and at low levels also in T cells [18]. NOD2

confers resistance against a broad variety of bacteria and is

activated by muramyl dipeptide (MDP) derived from

virtually all Gram-positive as well as Gram-negative bacte-

rial species [13,19,20,21]. However, whether NOD2 senses

other microbes and structures or participates only as

signaling partner is currently under debate [22]. To date,

controversy exists whether NOD2 plays a role in the defense

against T. gondii infection in vivo [13,23,24]. In one study,

NOD2-/- mice were unable to clear the parasite due to an

insufficient Th1-dependent IFN-c production [24], whereas

in another report NOD2-/- mice did not exhibit an enhanced

susceptibitily to T. gondii infection [23]. Conflicting results

might be due to differences in the intestinal microbiota

composition of mice used in the respective studies, for

instance [22,23]. The role of NOD2 in mediating potential

extra-intestinal inflammatory sequelae including the central

nervous system (CNS), however, has not been investigated so

far. In the present study we applied the oral high dose

T. gondii infection model in order to investigate the impact

of NOD2 in intestinal, systemic and extra-intestinal immune

responses and performed a comprehensive quantitative

molecular survey of the intestinal microbiota composition

of NOD2-/- and wildtype (WT) mice before and 7 days after

T. gondii infection.

Figure 1. Acute ileitis in T. gondii infected NOD2 deficient mice. In order to induce acute ileitis, C57BL/6 wildtype (WT; black circles) and NOD2
deficient (NOD2-/-; white circles) were perorally infected with T. gondii at day 0. (A) Relative body weight loss between day 7 post infection (p.i.) and
day 0 were determined (in %). (B) Absolute small intestinal lengths were measured in naı̈ve (N) and T. gondii infected mice with ileitis (ILE). (C)
Histopathological mucosal changes were assessed in ileal paraffin sections, and (D) T. gondii DNA determined in ex vivo ileal biopsies. Numbers of
analyzed mice are given in parentheses. Means (black bars) and significance levels (p-values) determined by Mann-Whitney-U test are indicated. Data
shown are representative for three independent experiments.
doi:10.1371/journal.pone.0105120.g001
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Results

T. gondii induced ileal immunopathology is aggravated
in NOD2-/- mice

In order to investigate the role of NOD2 in T. gondii infection

and induced acute ileitis, NOD2-/- and WT control mice were

perorally infected with 100 cysts of T. gondii ME49 strain by

gavage at day 0. Until day 7 post infection (d7 p.i.), NOD2-/-

animals had lost significantly more body weight as compared to

WT mice (15.361.5% vs 12.464.1%; p,0.05; Fig. 1A), indic-

ative of a more compromised clinical condition of the former.

Given that acute intestinal inflammation is accompanied by

significant shortening of the intestine [11,25,26], we measured the

individual small intestinal lengths at time of necropsy. At day 7

p.i., NOD2-/- mice displayed significantly shorter small intestines

as compared to WT controls (p,0.05; Fig. 1B), pointing towards

a more distinct small intestinal pathology upon peroral T. gondii
challenge. We next assessed the degree of histopathological

changes in ileal paraffin section. At day 7 p.i., NOD2-/- mice

exhibited more inflamed ileal mucosa including necroses as

indicated by higher histopathological scores as compared to WT

mice (4.560.6 versus 3.660.9; p,0.05; Fig. 1C and Fig. S1).

Remarkably, NOD2-/- mice harbored approximately three times

more T. gondii DNA in their ilea as compared to WT mice (p,

0.005; Fig. 1D).

To further characterize T. gondii induced inflammatory

responses in the small intestinal tract we next quantitatively

determined apoptotic cells as well as distinct immune cell

populations in the ileal mucosa and lamina propria by in situ
immunohistochemical stainings of small intestinal paraffin sec-

tions. The ilea of NOD2-/- mice contained approximately 50%

more apoptotic cells as compared to WT mice (p,0.01; Fig. 2A
and Fig. S2), further supporting the more devastating clinical and

histopathological outcome upon T. gondii infection. In addition, a

more distinct influx of MPO7 positive cells such as neutrophils and

monocytes exerting oxidative stress to the ileal mucosa and lamina

propria of NOD2-/- mice could be detected at d7 p.i. (p,0.05;

Fig. 2B and Fig. S3), whereas numbers of F4/80 positive

macrophages increased comparably upon T. gondii infection in

mice of either genotype (p,0.005–0.001 vs naı̈ve mice; Fig. 2C
and Fig. S4). Given that T. gondii induced ileitis is a mainly T

cell driven pro-inflammatory scenario, we next stained ileal

paraffin sections for CD3. The marked increase of T cells induced

by T. gondii was even more pronounced in NOD2-/- versus WT

animals at day 7 p.i. (p,0.05; Fig. 2D and Fig. S5). Whereas in

WT mice a significant, approximately two-fold influx of FOXP3+
regulatory T cells (Treg) into the small intestinal mucosa could be

observed at day 7 p.i. (p,0.001 vs naı̈ve control mice; Fig. 2E
and Fig. S6), Treg numbers were significantly lower in NOD2-/-

mice following ileitis induction (p,0.05; Fig. 2E and Fig. S6)

and did not differ compared to uninfected, naı̈ve NOD2-/-

animals.

We next determined local cytokine secretion in ex vivo biopsies

derived from ilea of infected and uninfected mice. Irrespective of

the genotype of mice, pro-inflammatory mediators such as nitric

oxide (NO), IFN-c and TNF-a increased multi-fold upon ileitis

induction (p,0.05–0.001 vs respective naı̈ve controls; Fig. 3A–
C). Seven days following T. gondii infection, higher NO (p,0.05;

Fig. 3A), but similar IFN-c and TNF-a protein levels (Fig. 3B,
C) could be detected in ilea taken from diseased NOD2-/- as

compared to WT mice, whereas expression levels of the anti-

inflammatory cytokine IL-10 were also multi-fold increased upon

T. gondii infection, but comparably high in WT and NOD2-/-

mice at day 7 (Fig. 3D). Taken together, the elevated ileal parasite

loads and aggravated inflammation in NOD2-/- mice indicates

that NOD2 mediated sensing is essential for protection of mice

against T. gondii infection.

NOD2-/- mice display less distinct systemic
pro-inflammatory immune responses following T. gondii
infection

Next, we assessed potential systemic immune responses upon

T. gondii infection. To address this, we determined pro-

inflammatory cytokine secretion in ex vivo biopsies of spleens

derived from NOD2-/- and WT mice suffering from acute ileitis.

Seven days following T. gondii infection, secretion of TNF-a and

IFN-c had increased multi-fold in spleens of either genotype (p,

0.001; Fig. 4). Remarkably, NOD2-/- mice displayed significantly

lower splenic TNF-a and IFN-c levels as compared to WT mice at

day 7 p.i. (p,0.05; Fig. 4). Hence, upon ileitis induction NOD2-/-

mice displayed more distinct local pro-inflammatory cytokine

concentrations (i.e. in inflamed ilea) as compared to WT controls,

whereas systemic (i.e. splenic) pro-inflammatory immune responses

were less pronounced at day 7 p.i.

Intestinal microbiota changes in NOD2-/- mice during
T. gondii ileitis

Given that the commensal intestinal microbiota composition is a

major determinant of susceptibility for and resistance against

bacterial or parasitic infection and thus for the inflammatory

outcome in the host [27], we performed a comprehensive

quantitative molecular survey of the main bacterial groups within

the commensal intestinal microbiota during T. gondii infection.

Overall, in naı̈ve healthy mice differences between age and sex

matched NOD2-/- and WT mice were rather subtle (Fig. 5).

However, NOD2-/- mice harbored slightly higher Lactobacilli, but

lower Bifidobacteria, which were virtually absent, and Mouse

Intestinal Bacteriodetes group in fecal samples (Fig. 5D, E, I) as

compared to WT mice. In acute ileitis, fecal loads of Enterobac-

teria, Enterococci, and Bacteroides/Prevotella spp. increased in

WT as well as NOD2-/- mice (Fig. 5B, C, F), whereas only in

NOD2-/- mice the total eubacterial load slightly increased until

day 7 p.i. (Fig. 5A).

Role of NOD2 in translocation of viable intestinal bacteria
to extra-intestinal compartments during T. gondii ileitis

We next investigated whether more distinct ileal inflammation

and subsequently more compromised epithelial barrier function

was in turn accompanied with higher rates of bacterial translo-

cation to extra-intestinal tissue sites. Bacterial translocation rates in

liver (60.068.17% vs 16.764.71%, respectively; p,0.05), spleen

(30.068.17% vs 10.060%, respectively; p,0.05), and kidneys

(30.068.17% vs 0.060.00%, respectively; p,0.05) were higher in

NOD2-/- as compared WT mice at day 7 p.i., but comparable

in draining mesenteric lymphnodes (MLN: 83.364.71% vs

86.764.71%, respectively; n.s.) (Fig. 6). Translocated viable

bacteria comprised aerobic species such as E. coli, Enterococcus
spp., and Lactobacillus spp. derived from the commensal intestinal

microbiota as determined by culture (not shown). Of note, all

cardiac blood samples remained culture-negative (Fig. 6). Fur-

thermore, no bacterial translocation at all could be detected in

healthy naı̈ve mice (not shown).

More distinct inflammatory sequelae in brains of NOD2-/-

mice following ileitis induction
To date no data about immunopathological intracerebral

changes in the acute ileitis model exist, given that mice succumb

NOD2 in T. gondii-Ileitis, Gut Microbiota, and Brain Inflammation
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the high dose T. gondii infection before significant changes in the

CNS might become detectable. Remarkably, mice of either

genotype displayed significant but comparable intracerebral

histopathological changes of both, meninges and cortex as early

as 7 days p.i., (p,0.005 vs naı̈ve controls; Fig. 7A and Fig. S7),

whereas the intracerebral T. gondii loads measured by RT-PCR

were significantly higher in NOD2-/- as compared to WT mice

(p,0.05; Fig. 7B). Furthermore, brains of NOD2-/- mice

exhibited higher numbers of F4/80+ recruited macrophages and

microglia cells as compared to WT mice 7 days upon ileitis

induction (p,0.05; Fig. 7C and Fig. S8). The increased

numbers of pro-inflammatory immune cells was accompanied by

higher expression levels of IFN-c mRNA in brains of T. gondii
infected NOD2-/- as compared to WT control mice (p,0.05;

Fig. 7D). Hence, T. gondii induced small intestinal inflammation

was accompanied by translocation of intestinal bacteria, systemic

dissemination of parasites, and pro-inflammatory responses in the

brain that were more pronounced in NOD2-/- as compared to

WT mice.

Discussion

It is well established that NOD2 plays an important role in the

innate host defense against intestinal bacterial pathogens such as

Salmonella enteritidis, Listeria monocytogenes, and Streptococcus
pneumoniae [17,28,29,30]. Results of the present study indicate

that NOD2 signaling is also essential for the protection of mice

against intestinal parasite infection followed by systemic inflam-

mation including the brain. This was demonstrated by an

aggravated clinical condition, more detrimental intestinal inflam-

mation, increased systemic parasite dissemination and brain

inflammation in NOD2-/- mice as compared to WT controls.

Increased concentrations of parasitic DNA in the intestines and

brains of NOD2-/- mice indicated that the aggravation of intestinal

and cerebral inflammation was due to enhanced susceptibility to

parasitic infection. Enhanced parasitic infection and dissemination

in NOD2-/- mice was accompanied by higher translocation rates

of viable intestinal bacteria to extra-intestinal compartments such

as liver, spleen, and kidney. Our data are partly supported by a

previous study demonstrating less clearance of T. gondii due to a

compromised Th1-dependent IFN-c production (measured in

sera) of infected NOD2-/- mice [24]. In our study, however, local

(i.e. ileal) protein expression levels of IFN-c and TNF-a, which is

also involved in parasitic host defense, did not differ between mice

of either genotype, but were lower in spleens of infected NOD2-/-

as compared to WT mice. Shaw and colleagues further reported

that WT infected mice survived the infection, whereas NOD2-/-

had all died until day 21 p.i., but data regarding intestinal

histopathology were lacking. In our study, however, T. gondii
challenged mice were severely suffering from acute ileitis,

succumbed to the infection and presented in a prefinal condi-

tion seven days following infection. In another study and in

Figure 2. Intestinal immune cell responses following ileitis induction in NOD2 deficient mice. Immune cell responses were assessed
microscopically in ileal paraffin sections derived from C57BL/6 wildtype (WT; black circles) and NOD2 deficient (NOD2-/-; white circles) seven days
following ileitis induction (ILE) applying in situ immunohistochemistry. The average numbers of ileal (A) apoptotic cells (positive for caspase-3), (B)
neutrophilic granulocytes and monocytes (positive for MPO-7), (C) macrophages (positive for F4/80), (D) T-lymphocytes (positive for CD3), and (E)
regulatory T-cells (Treg, positive for FOXP3) were determined microscopically in six high power fields (HPF, 4006magnification) per animal. Naive
mice served as negative controls (N). Numbers of analyzed mice (in parentheses), means (black bars) and levels of significance (P-values) as compared
to the respective groups (determined by Mann-Whitney-U test) are indicated. Data shown are representative for three independent experiments.
doi:10.1371/journal.pone.0105120.g002
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inconsistency with the report by Shaw and colleagues, Caetano

et al. demonstrated that NOD2-/- mice were fully capable of

inducing Th1 immune responses and did not display enhanced

susceptibility to T. gondii infection [23,24]. Many factors might be

responsible for the divergent results in murine infection models.

For instance, strain differences and numbers of T. gondii cysts as

well as the application route might impact the outcome of

infection experiments. In both studies by Shaw et al. and Caetano

et al., 25 cysts of the ME49 strain were applied intraperitoneally

[23], whereas we here challenged our mice with a high dose

(i.e. 100 cysts) of the same T. gondii strain, although perorally. In

addition, Benson et al. demonstrated that NOD2-/- mice exhibited

a normal Th1 immunity against T. gondii ME49 following high

dose peroral infection [31]. One needs to take into consideration

that differences in sex, age, diet and the genetic background of the

applied mice (incomplete versus complete backcrossings) might

have resulted in the observed differences. Notably, a plethora of

recent studies highlights the impact of the commensal microbiota

composition on initiating, mediating, and perpetuating acute and

chronic immunopathology in mice and men [32,33,34,35].

Marked differences in the commensal intestinal microbiota

composition might represent a general complication when

comparing in vivo studies from different research institutions. It

is well known that the colonization status of mice ultimately varies

between animal facilities, units within the same facility, between

rooms within the same unit and additionally between cages within

the same room [36,37,38]. Furthermore, NOD2 has been shown

to be required for orchestrating the commensal intestinal

microbiota composition in mice and men [27,39], and differences

are considered to impact the early immune responses following

murine infection with intestinal pathogens such as Citrobacter
rodentium and Salmonella enterica Typhimurium [22,40]. Our

quantitative molecular survey of main intestinal bacterial groups

revealed that under identical housing conditions in our mouse

facility, the overall intestinal microbiota composition differed

slightly between naı̈ve NOD2-/- and WT control mice. Remark-

ably, the Bifidobacteria population was virtually absent in

NOD2-/- mice. Eventhough these differences might be rather

Figure 3. Small intestinal cytokine responses in NOD2 deficient mice following ileitis induction. (A) Nitric oxide, (B) IFN-c, (C) TNF-a, and
(D) IL-10 levels were determined in ex vivo ileal biopsies derived from C57BL/6 wildtype (WT; black circles) and NOD2 deficient (NOD2-/-; white circles)
seven days following ileitis induction (ILE) as described in methods. Naive mice served as negative controls (N). Numbers of analyzed mice (in
parentheses), means (black bars) and levels of significance (P-values) as compared to the respective groups (determined by Mann-Whitney-U test) are
indicated. Data shown are representative for three independent experiments.
doi:10.1371/journal.pone.0105120.g003
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subtle at the first glance, the biological impact might be significant

in our parasitic infection model given that particularly Bifidobac-

teria are considered as beneficial, probiotic bacterial species with

anti-inflammatory properties and, hence, contribute to host

colonization resistance against invading pathogens [41]. This is

further supported by a previous in vitro study, demonstrating that

co-culture of Bifidobacteria stimulated dendritic cells with CD4+
T cells resulted in an increase of CD25+ FOXP3+ Tregs [42]. It

can be speculated that the observed virtual absence of bifidobacter-

ial species in NOD2-/- mice might at least in part contribute to a

compromised host resistance, diminished local anti-inflammatory

(i.e. lower intestinal mucosal FOXP3 cell numbers) as well as

systemic pro-inflammatory responses (i.e. lower splenic IFN-c and

TNF-a) insufficiently combating peroral T. gondii infection.

Intraperitoneal low dose (i.e. max. 20 cysts) T. gondii infection

of mice represents a model for chronic encephalitis developing

within several weeks p.i. [1,4,43]. So far, data about intracerebral

immunopathological changes following oral high dose T. gondii
infection are lacking given that acute ileitis develops within one

week p.i. and mice succumb before significant changes in the CNS

might become detectable. Our results demonstrate for the first

time, that intracerebral inflammatory foci could be observed

already within seven days following T. gondii infection irrespective

of the genotype, whereas NOD2-/- mice exhibited higher

intracerebral parasitic loads. The elevated numbers of F4/80

positive recruited macrophages and microglial cells in NOD2-/-

mice reveal more distinct inflammatory responses compared to

WT controls. In addition, the increased IFN-c mRNA expression

in NOD2-/- mice further indicates that NOD2 plays a role not

only in the immunopathological processes in the ileum, but also in

CNS inflammation.

In conclusion, NOD2 is essentially involved in murine host

protection against peroral T. gondii infection, parasite-induced

Th1-type intestinal immunopathology, parasite dissemination and

cerebral inflammation in the murine T. gondii induced acute ileitis

model.

Materials and Methods

Ethics Statement
All animal experiments were conducted according to the

European Guidelines for animal welfare (2010/63/EU) and to

the ARRIVE guidelines with approval of the commission for

animal experiments headed by the ‘‘Landesamt für Gesundheit

und Soziales’’ (LaGeSo, Berlin; registration number G0146/10).

Animal welfare was monitored twice daily by assessment of clinical

conditions and weight loss of mice. Mice suffering from weight loss

.20% were euthanized by isofluran treatment (Abbott, Germany)

in accordance with the guidelines of the local commission for

animal experiments headed by the ‘‘Landesamt für Gesundheit

und Soziales’’. Hence, humane endpoints were implemented in

our animal research protocol.

Mice and induction of acute ileitis
NOD2-/- mice (in C57BL/6 background) were purchased from

Jackson Laboratories [28] and were bred and housed together

with WT controls under specific pathogen-free (SPF) conditions in

the Forschungseinrichtung für Experimentelle Medizin (FEM,

Charité – University Medicine Berlin, Germany). For induction of

acute ileitis, age matched 3 months old female mice were infected

perorally by gavage with 100 T. gondii cysts (ME49 strain) from

homogenized brains of intraperitoneally infected NMRI mice in a

volume of 0.3 mL phosphate-buffered saline (PBS), as described

previously [11,44,45,46]. Animals suffering from severe ileitis and

succumbing to infection were humanely euthanized.

Sampling procedures and histopathology
Mice were sacrificed by isofluran treatment (Abbott, Germany).

Tissue samples from brain, spleen, liver, kidneys, mesenteric

lymphnodes (MLNs) and ileum were removed under sterile

conditions. Small intestinal samples from each mouse were

collected in parallel for histopathological, immunohistochemical,

microbiological, and immunological analyses. Small intestinal

Figure 4. Pro-inflammatory cytokine responses in spleens of NOD2 deficient mice following ileitis induction. Systemic pro-
inflammatory cytokine responses were assessed by measuring (A) TNF-a and (B) IFN-c levels in ex vivo biopsies of spleens derived from C57BL/6
wildtype (WT; black circles) and NOD2 deficient (NOD2-/-; white circles) mice seven days following ileitis induction (ILE). Naive mice served as negative
controls (N). Numbers of analyzed mice (in parentheses), means (black bars) and levels of significance (P-values) as compared to the respective groups
(determined by Mann-Whitney-U test) are indicated. Data shown are representative for three independent experiments.
doi:10.1371/journal.pone.0105120.g004
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lengths were determined by measuring the distance from the

duodenum leaving the stomach to the ileal-caecal transiltion by a

ruler and expressed in cm. Immunohistopathological changes were

determined in samples derived from ileum and brain that were

immediately fixed in 5% formalin and embedded in paraffin.

Sections (5 mm) were stained with hematoxylin and eosin (H&E),

examined by light microscopy (magnification 1006and 4006) and

histopathological changes quantitatively assessed applying respec-

tive histopathological scoring systems for blinded duplicate

evaluation.

Ileal histopathology was determined as described previously

(according to [11]; max 6 points: 0, normal; 1, minimal focal

inflammation, edematous blubbing, intact epithelium; 2, mild

inflammation of mucosa and submucosa, cell-free exudate into the

lumen, but intact epithelium; 3, moderate inflammation of mucosa

and submucosa, erosions and/or ulcerations, cryptitis or crypt

abscesses, cellular shedding into the lumen; 4, severe inflammation

of mucosa and submucosa, ulcerations, fibrosis, distortion of

villous architecture, beginning epithelial disintegration; 5, severe

inflammation, mucosal destruction ,50% of small intestine

length; 6, severe inflammation, complete destruction .50% of

small intestine length, severe necroses.

Brain histopathology (max. 10 points; according to [2,4,43]

with minor modifications): Cortex and meningi (separately):

number of inflammatory foci per HPF (1006magnification) were

assessed. 0, heathy brain structure with no inflammatory foci; 1,

single inflammatory foci (1–3); 2, inflammatory foci (4–6); 3,

inflammatory foci (7–10); 4, inflammatory foci (11–15); 5,

inflammatory foci (.15).

Immunohistochemistry
In situ immunohistochemical analyses of 5 mm thin sections of

ileum and whole brain tissue samples that were immediately fixed

in 5% formalin and embedded in paraffin before were performed

as described previously [26,47,48,49,50]. Primary antibodies

against cleaved caspase-3 (Asp175, Cell Signaling, USA, 1:200),

CD3 (M20, Santa Cruz, 1:1000), myeloperoxidase-7 (MPO-7, #
A0398, Dako, 1:10000), FOXP3 (FJK-16s, eBioscience, 1:100)

and F4/80 (# 14-4801, clone BM8, eBioscience, 1:50) were used.

For each animal, the average number of positively stained cells

within at least six high power fields (HPF, 0.287 mm2; 4006
magnification) was determined microscopically by two indepen-

dent double-blinded investigators.

Figure 5. Intestinal microbiota composition of NOD2 deficient mice following ileitis induction. Main bacterial groups of the commensal
intestinal microbiota were quantified by molecular analysis of fecal samples derived from C57BL/6 wildtype (WT; black circles) and NOD2 deficient
(NOD2-/-; white circles) mice before (N, naı̈ve) and seven days after ileitis induction by peroral T. gondii infection (ILE). Quantitative Real-Time-PCR
analyses amplified bacterial 16S rRNA variable regions and 16S rRNA gene numbers/ng DNA from the following bacterial groups: (A) Total eubacterial
load, (B) Enterobacteria, (C) Enterococci, (D) Lactobacilli, (E) Bifidobacteria, (F) Bacteroides/Prevotella spp., (G) Clostridium leptum group, (H) Clostridium
coccoides group, and (I) Mouse intestinal Bacteroidetes. Numbers of mice harboring the respective bacterial 16S rRNA out of the total number of
analyzed animals are given in parentheses. Medians and significance levels (p-values) determined by Mann-Whitney-U test are indicated. Data shown
are representative for three independent experiments.
doi:10.1371/journal.pone.0105120.g005

NOD2 in T. gondii-Ileitis, Gut Microbiota, and Brain Inflammation

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e105120



Quantification of ileal T. gondii DNA and measurement of
cytokines

Ileal ex vivo biopsies were cut longitudinally and washed in PBS.

The content of T. gondii was quantified by PCR analysis of DNA

isolated from approximately 1 cm2 of homogenized ileal tissue as

described previously [51]. Furthermore, spleen or strips of

approximately 1 cm2 ileal tissue were placed in 24-flat-bottom

well culture plates (Nunc, Wiesbaden, Germany) containing

500 mL serum-free RPMI 1640 medium supplemented with

penicillin (100 U/mL) and streptomycin (100 mg/mL; PAA

Laboratories). After 18 h incubation at 37uC, culture supernatants

were analyzed for IFN-c, TNF-a, and IL-10 by the Mouse

Inflammation Cytometric Bead Assay (CBA; BD Biosciences) in a

BD FACSCanto II flow cytometer (BD Biosciences). Nitric oxide

(NO) was determined by Griess reaction as described earlier [11].

Molecular analysis of the intestinal microbiota
Total DNA from fecal samples was extracted as described

previously [11]. Briefly, DNA was quantified using Quant-iT

PicoGreen reagent (Invitrogen, UK) and adjusted to 1 ng per mL.

Then, main bacterial groups abundant in the murine conventional

intestinal microbiota were detected by quantitative real-time (RT)

-PCR with primers specific for sequences in the 16S rRNA genes

of individual bacterial species, genera or groups (Tib MolBiol,

Germany) as described previously [47,48,52]. Numbers of 16S

rRNA gene copies/ng DNA of each sample were determined and

frequencies of respective bacterial groups calculated proportionally

to the eubacterial (V3) amplicon.

Bacterial translocation
For qualitative detection of bacterial translocation, MLNs, liver,

spleen, kidney and cardiac blood (0.5 mL) were transferred into a

thioglycolate broth each and incubated for maximum seven days

at 37uC [53]. Bacterial growth was monitored daily by turbidity

assessment. Aliquots of turbid broths were cultivated on respective

solid media under aerobic, microaerophilic and obligate anaerobic

conditions. Bacterial species identification was performed as

described earlier [11].

Cerebral cytokine and parasitic DNA detection
Brain tissue preparation and measurement of IFN-c mRNA

expression by quantitative RT-PCR were performed as described

Figure 6. Bacterial translocation in NOD2 deficient following ileitis induction. Relative translocation frequencies (%) of live bacteria were
determined in ex vivo biopsies of mesenteric lymphnodes (MLN), liver, spleen, kidneys, and blood derived from C57BL/6 wildtype (WT; black bars;
n = 10) and NOD2-/- (NOD2; white bars; n = 10) mice by culture in enrichment broths seven days after ileitis induction. Medians, standard deviations
and significance levels (p-values) determined by Mann-Whitney-U test are indicated. Data shown are pooled from three independent experiments.
doi:10.1371/journal.pone.0105120.g006
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previously [4]. Perfused brain tissue samples were snap-frozen and

kept at 280uC. 30 mg of brain tissue were used for nucleic acid

purification using the spin column based AllPrep DNA/RNA/

Protein Mini Kit (QIAgen, Hilden, Germany) following the

manufacturer’s instructions. On-membrane DNase I digestion

(peqGOLD, Erlangen, Germany) was performed during RNA

purification. RNA and DNA purity and concentration were

determined by absorbance at 230, 260 and 280 nm in a

NanoDrop spectrophotometer (Fisher Scientific, Germany).

Semi-quantitative real time PCR analyses were performed to

determine parasite loads in brains. FastStart Essential DNA Green

Master (Roche, Grenzach-Wyhlen, Germany) was used with

90 ng genomic DNA in a reaction volume of 20 mL. Triplicate

reactions were developed in a LightCycler 480 Instrument II

(Roche, Grenzach-Wyhlen, Germany). After an initial activation

step (95uC for 10 min), 45 amplification cycles were run,

comprising of denaturation at 95uC for 15 sec, annealing at

60uC for 15 sec and elongation at 72uC for 15 sec. The following

primers manufactured by Tib MolBiol (Berlin, Germany) were

used at a final concentration of 0.3 mM: Toxoplasma gondii B1:

(Forward) 59- TCCCCTCTgCTggCgAAAAgT-39 and (Reverse)

59-AgCgTTCgTggTCAACTATCgATTg-39 [54]. Mus musculus
argininosuccinate lyase (ASL) gene: (Forward) 59-TCTTCgTT-

AgCTggCAACTCACCT-39 and (Reverse) 59-ATgACCCAgC-

AgCTAAgCAgATCA-39 [55].

Parasite loads (target: Toxoplasma gondii, B1 gene) were

measured relative to mouse cell number (reference: ASL gene),

that is the target/reference ratio calculated with the LightCycler

480 Software release 1.5.0 (Roche, Grenzach-Wyhlen, Germany).

To determine relative gene expression, SuperScript III Plati-

num One-Step Quantitative RT-PCR System (life technologies,

Darmstadt, Germany) was used with 300 ng total RNA in a

reaction volume of 10 mL. Triplicate reactions were developed in a

LightCycler 480 Instrument II (Roche, Grenzach-Wyhlen,

Germany). Reverse transcription was performed for 15 min at

50uC followed by 2 min at 95uC. Subsequently, 45 amplification

cycles were run, comprising of denaturation at 95uC for 15 sec

and annealing/elongation at 60uC for 30 sec. TaqMan Gene

Expression Assays (life technologies, Darmstadt, Germany) were

used for amplification of HPRT (Mm01545399_m1) and IFNG

Figure 7. Intracerebral immunopathology in NOD2 deficient mice following ileitis induction. (A) Intracerebral histopathological changes
(in cortex and meninges) were assessed in H&E stained brain paraffin sections applying a standardized score and (B) T. gondii DNA determined in ex
vivo whole brain biopsies derived from C57BL/6 wildtype (WT; black circles) and NOD2 deficient (NOD2-/-; white circles) mice seven days following
ileitis induction (ILE) by semi-quantitative RT-PCR and normalized relative to the M. musculus ASL gene (Arbitrary Units). Naive mice served as negative
controls (N). Furthermore, (C) average numbers of macrophages and microglia (positive for F4/80) were quantified microscopically in six high power
fields (HPF, 4006 magnification) of brain paraffin sections per animal. (D) IFN-c mRNA expression levels were determined in ex vivo whole brain
biopsies by quantitative RT-PCR. Numbers of analyzed mice (in parentheses), means (black bars) and levels of significance (P-values) as compared to
the respective groups (determined by Mann-Whitney-U test) are indicated. Data shown are representative for three independent experiments.
doi:10.1371/journal.pone.0105120.g007
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(Mm00801778_m1). HPRT expression was chosen as reference

for normalization and target/reference ratios were calculated with

the LightCycler 480 Software release 1.5.0 (Roche, Grenzach-

Wyhlen, Germany). Resulting data were further normalized on

values of control groups.

Statistical analysis
Medians, means, standard deviations and levels of significance

as determined by Mann-Whitney U-Test were assessed using

GraphPad Prism version 6 (GraphPad Software, Inc., San Diego,

CA, USA). Two-sided probability (p) values #0.05 were consid-

ered significant. All experiments were repeated twice.

Supporting Information

Figure S1 Histopathological changes in T. gondii infect-
ed NOD2 deficient mice suffering from acute ileitis.
Representative photomicrographs of H&E stained ileal paraffin

sections illustrate differences in mucosal histopathology seven days

following ileitis induction (ILE) in NOD2-/- as compared to

wildtype (WT) mice (1006 magnification, scale bar 100 mm).

Naı̈ve (N) mice served as negative controls.

(TIFF)

Figure S2 Small intestinal apoptotic cells following
ileitis induction in NOD2 deficient mice. Representative

photomicrographs of ileal paraffin sections stained by immuno-

histochemistry illustrate abundance of apoptotic cells (positive for

caspase-3) in small intestines of NOD2-/- as compared to wildtype

(WT) mice seven days following ileitis induction (ILE). Naive (N)

animals served as negative controls (4006magnification, scale bar

20 mm).

(TIFF)

Figure S3 Small intestinal abundance of neutrophils
and monocytes following ileitis induction in NOD2
deficient mice. Representative photomicrographs of ileal

paraffin sections stained by immunohistochemistry illustrate

abundance of neutrophilic granulocytes and monocytes (positive

for MPO-7) in small intestines of NOD2-/- as compared to

wildtype (WT) mice seven days following ileitis induction (ILE).

Naive (N) animals served as negative controls. Arrows indicate

positively stained cells (4006magnification, scale bar 20 mm).

(TIFF)

Figure S4 Small intestinal abundance of macrophages
following ileitis induction in NOD2 deficient mice.
Representative photomicrographs of ileal paraffin sections stained

by immunohistochemistry illustrate abundance of macrophages

(positive for F4/80) in small intestines of NOD2-/- as compared to

wildtype (WT) mice seven days following ileitis induction (ILE).

Naive (N) animals served as negative controls (4006 magnifica-

tion, scale bar 20 mm).

(TIFF)

Figure S5 Small intestinal abundance of T lymphocytes
following ileitis induction in NOD2 deficient mice.

Representative photomicrographs of ileal paraffin sections stained

by immunohistochemistry illustrate abundance of T lymphocytes

(positive for CD3) in small intestines of NOD2-/- as compared to

wildtype (WT) mice seven days following ileitis induction (ILE).

Naive (N) animals served as negative controls (4006 magnifica-

tion, scale bar 20 mm).

(TIFF)

Figure S6 Small intestinal abundance of regulatory T
cells following ileitis induction in NOD2 deficient mice.
Representative photomicrographs of ileal paraffin sections stained

by immunohistochemistry illustrate abundance of regulatory T

cells (Treg, positive for FOXP3) in small intestines of NOD2-/- as

compared to wildtype (WT) mice seven days following ileitis

induction (ILE). Naive (N) animals served as negative controls

(4006magnification, scale bar 20 mm).

(TIFF)

Figure S7 Intracerebral immunopathology in NOD2
deficient mice following ileitis induction. Representative

photomicrographs of H&E stained brain paraffin sections illustrate

cerebral histopathological changes (meninges and cortex) seven

days following ileitis induction (ILE) in NOD2-/- as compared to

wildtype (WT) mice. Arrows indicate inflammatory foci (1006
magnification, scale bar 100 mm). Naı̈ve (N) mice served as

negative controls.

(TIFF)

Figure S8 Intracerebral macrophages and microglia in
NOD2 deficient mice following ileitis induction. Cerebral

macrophages and microglia were visualized following F4/80

staining of brain paraffin sections (4006 magnification, scale bar

20 mm) derived seven days following ileitis induction (ILE) in

NOD2-/- as compared to wildtype (WT) mice. Naı̈ve (N) mice

served as negative controls.

(TIFF)

Checklist S1 ARRIVE Guidelines Checklist for report-
ing of in vivo experiments.

(PDF)
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