451 research outputs found
Wound dressings for a proteolytic-rich environment
Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural
materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These
new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This
article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin.
The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of
healing process will be reviewed
Tumor-targeted delivery of biologically active TRAIL protein
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5α (E. coli DH5α) specifically replicates in solid tumors and metastases in live animals. E. coli DH5α does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high âtumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5α results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5α did not cause any detectable toxicity to any organs, suggesting that E. coli DH5α-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)Îș with Îș=2.9-1.8+1.7 for zâČ1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3Mâ. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9Mâ. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60Mâ, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below Ïiâ0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants
partially_open1412sĂŹWe present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the weave semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20â976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as
âŒ6.3Ă10^â26 for Cas A and âŒ5.6Ă10^â26 for Vela Jr. at frequencies near 166 Hz at 95% efficiency.openAbbott, R.; Abbott, T.âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.âX.; Adya, V.âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P.âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S.âB.; Anderson, W.âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S.âV.; Ansoldi, S.; Antelis, J.âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M.âC.; Areeda, J.âS.; ArĂšne, M.; Arnaud, N.; Aronson, S.âM.; Arun, K.âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S.âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M.âK.âM.; Badger, C.; Bae, S.; Baer, A.âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S.âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J.âC.; Barbieri, C.; Barish, B.âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M.âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J.âC.; Baylor, A.âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V.âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T.âF.; Bentley, J.âD.; BenYaala, M.; Bergamin, F.; Berger, B.âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I.âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi, M.; Bizouard, M.-A.; Blackburn, J.âK.; Blair, C.âD.; Blair, D.âG.; Blair, R.âM.; Bobba, F.; Bode, N.; Boer, M.; Bogaert, G.; Boldrini, M.; Bonavena, L.âD.; Bondu, F.; Bonilla, E.; Bonnand, R.; Booker, P.; Boom, B.âA.; Bork, R.; Boschi, V.; Bose, N.; Bose, S.; Bossilkov, V.; Boudart, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P.âR.; Bramley, A.; Branch, A.; Branchesi, M.; Brau, J.âE.; Breschi, M.; Briant, T.; Briggs, J.âH.; Brillet, A.; Brinkmann, M.; Brockill, P.; Brooks, A.âF.; Brooks, J.; Brown, D.âD.; Brunett, S.; Bruno, G.; Bruntz, R.; Bryant, J.; Bulik, T.; Bulten, H.âJ.; Buonanno, A.; Buscicchio, R.; Buskulic, D.; Buy, C.; Byer, R.âL.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. CalderĂłn; Callaghan, J.âD.; Callister, T.âA.; Calloni, E.; Cameron, J.; Camp, J.âB.; Canepa, M.; Canevarolo, S.; Cannavacciuolo, M.; Cannon, K.âC.; Cao, H.; Capote, E.; Carapella, G.; Carbognani, F.; Carlin, J.âB.; Carney, M.âF.; Carpinelli, M.; Carrillo, G.; Carullo, G.; Carver, T.âL.; Diaz, J. Casanueva; Casentini, C.; Castaldi, G.; Caudill, S.; CavagliĂ , M.; Cavalier, F.; Cavalieri, R.; Ceasar, M.; Cella, G.; CerdĂĄ-DurĂĄn, P.; Cesarini, E.; Chaibi, W.; Chakravarti, K.; Subrahmanya, S. Chalathadka; Champion, E.; Chan, C.-H.; Chan, C.; Chan, C.âL.; Chan, K.; Chandra, K.; Chanial, P.; Chao, S.; Charlton, P.; Chase, E.âA.; Chassande-Mottin, E.; Chatterjee, C.; Chatterjee, Debarati; Chatterjee, Deep; Chaturvedi, M.; Chaty, S.; Chen, H.âY.; Chen, J.; Chen, X.; Chen, Y.; Chen, Z.; Cheng, H.; Cheong, C.âK.; Cheung, H.âY.; Chia, H.âY.; Chiadini, F.; Chiarini, G.; Chierici, R.; Chincarini, A.; Chiofalo, M.âL.; Chiummo, A.; Cho, G.; Cho, H.âS.; Choudhary, R.âK.; Choudhary, S.; Christensen, N.; Chu, Q.; Chua, S.; Chung, K.âW.; Ciani, G.; Ciecielag, P.; CieĆlar, M.; Cifaldi, M.; Ciobanu, A.âA.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, E.âN.; Clark, J.âA.; Clarke, L.; Clearwater, P.; Clesse, S.; Cleva, F.; Coccia, E.; Codazzo, E.; Cohadon, P.-F.; Cohen, D.âE.; Cohen, L.; Colleoni, M.; Collette, C.âG.; Colombo, A.; Colpi, M.; Compton, C.âM.; Constancio, M.; Conti, L.; Cooper, S.âJ.; Corban, P.; Corbitt, T.âR.; Cordero-CarriĂłn, I.; Corezzi, S.; Corley, K.âR.; Cornish, N.; Corre, D.; Corsi, A.; Cortese, S.; Costa, C.âA.; Cotesta, R.; Coughlin, M.âW.; Coulon, J.-P.; Countryman, S.âT.; Cousins, B.; Couvares, P.; Coward, D.âM.; Cowart, M.âJ.; Coyne, D.âC.; Coyne, R.; Creighton, J.âD.âE.; Creighton, T.âD.; Criswell, A.âW.; Croquette, M.; Crowder, S.âG.; Cudell, J.âR.; Cullen, T.âJ.; Cumming, A.; Cummings, R.; Cunningham, L.; Cuoco, E.; CuryĆo, M.; Dabadie, P.; Canton, T. Dal; DallâOsso, S.; DĂĄlya, G.; Dana, A.; DaneshgaranBajastani, L.âM.; DâAngelo, B.; Danilishin, S.; DâAntonio, S.; Danzmann, K.; Darsow-Fromm, C.; Dasgupta, A.; Datrier, L.âE.âH.; Datta, S.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G.âS.; Davis, D.; Davis, M.âC.; Daw, E.âJ.; Dean, R.; DeBra, D.; Deenadayalan, M.; Degallaix, J.; De Laurentis, M.; DelĂ©glise, S.; Del Favero, V.; De Lillo, F.; De Lillo, N.; Del Pozzo, W.; DeMarchi, L.âM.; De Matteis, F.; DâEmilio, V.; Demos, N.; Dent, T.; Depasse, A.; De Pietri, R.; De Rosa, R.; De Rossi, C.; DeSalvo, R.; De Simone, R.; Dhurandhar, S.; DĂaz, M.âC.; Diaz-Ortiz, M.; Didio, N.âA.; Dietrich, T.; Di Fiore, L.; Di Fronzo, C.; Di Giorgio, C.; Di Giovanni, F.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Ding, B.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Divakarla, A.âK.; Dmitriev, A.; Doctor, Z.; DâOnofrio, L.; Donovan, F.; Dooley, K.âL.; Doravari, S.; Dorrington, I.; Drago, M.; Driggers, J.âC.; Drori, Y.; Ducoin, J.-G.; Dupej, P.; Durante, O.; DâUrso, D.; Duverne, P.-A.; Dwyer, S.âE.; Eassa, C.; Easter, P.âJ.; Ebersold, M.; Eckhardt, T.; Eddolls, G.; Edelman, B.; Edo, T.âB.; Edy, O.; Effler, A.; Eichholz, J.; Eikenberry, S.âS.; Eisenmann, M.; Eisenstein, R.âA.; Ejlli, A.; Engelby, E.; Errico, L.; Essick, R.âC.; EstellĂ©s, H.; Estevez, D.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T.âM.; Ewing, B.âE.; Fafone, V.; Fair, H.; Fairhurst, S.; Farah, A.âM.; Farinon, S.; Farr, B.; Farr, W.âM.; Farrow, N.âW.; Fauchon-Jones, E.âJ.; Favaro, G.; Favata, M.; Fays, M.; Fazio, M.; Feicht, J.; Fejer, M.âM.; Fenyvesi, E.; Ferguson, D.âL.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, T.âA.; Fidecaro, F.; Figura, P.; Fiori, I.; Fishbach, M.; Fisher, R.âP.; Fittipaldi, R.; Fiumara, V.; Flaminio, R.; Floden, E.; Fong, H.; Font, J.âA.; Fornal, B.; Forsyth, P.âW.âF.; Franke, A.; Frasca, S.; Frasconi, F.; Frederick, C.; Freed, J.âP.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V.âV.; FronzĂ©, G.âG.; Fulda, P.; Fyffe, M.; Gabbard, H.âA.; Gadre, B.âU.; Gair, J.âR.; Gais, J.; Galaudage, S.; Gamba, R.; Ganapathy, D.; Ganguly, A.; Gaonkar, S.âG.; Garaventa, B.; GarcĂa-NĂșñez, C.; GarcĂa-QuirĂłs, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gayathri, V.; Gemme, G.; Gennai, A.; George, J.; Gerberding, O.; Gergely, L.; Gewecke, P.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, Shaon; Ghosh, Shrobana; Giacomazzo, B.; Giacoppo, L.; Giaime, J.âA.; Giardina, K.âD.; Gibson, D.âR.; Gier, C.; Giesler, M.; Giri, P.; Gissi, F.; Glanzer, J.; Gleckl, A.âE.; Godwin, P.; Goetz, E.; Goetz, R.; Gohlke, N.; Goncharov, B.; GonzĂĄlez, G.; Gopakumar, A.; Gosselin, M.; Gouaty, R.; Gould, D.âW.; Grace, B.; Grado, A.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Grassia, P.; Gray, C.; Gray, R.; Greco, G.; Green, A.âC.; Green, R.; Gretarsson, A.âM.; Gretarsson, E.âM.; Griffith, D.; Griffiths, W.; Griggs, H.âL.; Grignani, G.; Grimaldi, A.; Grimm, S.âJ.; Grote, H.; Grunewald, S.; Gruning, P.; Guerra, D.; Guidi, Gianluca; Guimaraes, A.âR.; GuixĂ©, G.; Gulati, H.âK.; Guo, H.-K.; Guo, Y.; Gupta, Anchal; Gupta, Anuradha; Gupta, P.; Gustafson, E.âK.; Gustafson, R.; Guzman, F.; Haegel, L.; Halim, O.; Hall, E.âD.; Hamilton, E.âZ.; Hammond, G.; Haney, M.; Hanks, J.; Hanna, C.; Hannam, M.âD.; Hannuksela, O.; Hansen, H.; Hansen, T.âJ.; Hanson, J.; Harder, T.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G.âM.; Harry, I.âW.; Hartwig, D.; Haskell, B.; Hasskew, R.âK.; Haster, C.-J.; Haughian, K.; Hayes, F.âJ.; Healy, J.; Heidmann, A.; Heidt, A.; Heintze, M.âC.; Heinze, J.; Heinzel, J.; Heitmann, H.; Hellman, F.; Hello, P.; Helmling-Cornell, A.âF.; Hemming, G.; Hendry, M.; Heng, I.âS.; Hennes, E.; Hennig, J.; Hennig, M.âH.; Hernandez, A.âG.; Vivanco, F. Hernandez; Heurs, M.; Hild, S.; Hill, P.; Hines, A.âS.; Hochheim, S.; Hofman, D.; Hohmann, J.âN.; Holcomb, D.âG.; Holland, N.âA.; Hollows, I.âJ.; Holmes, Z.âJ.; Holt, K.; Holz, D.âE.; Hopkins, P.; Hough, J.; Hourihane, S.; Howell, E.âJ.; Hoy, C.âG.; Hoyland, D.; Hreibi, A.; Hsu, Y.; Huang, Y.; HĂŒbner, M.âT.; Huddart, A.âD.; Hughey, B.; Hui, V.; Husa, S.; Huttner, S.âH.; Huxford, R.; Huynh-Dinh, T.; Idzkowski, B.; Iess, A.; Ingram, C.; Isi, M.; Isleif, K.; Iyer, B.âR.; JaberianHamedan, V.; Jacqmin, T.; Jadhav, S.âJ.; Jadhav, S.âP.; James, A.âL.; Jan, A.âZ.; Jani, K.; Janquart, J.; Janssens, K.; Janthalur, N.âN.; Jaranowski, P.; Jariwala, D.; Jaume, R.; Jenkins, A.âC.; Jenner, K.; Jeunon, M.; Jia, W.; Johns, G.âR.; Jones, A.âW.; Jones, D.âI.; Jones, J.âD.; Jones, P.; Jones, R.; Jonker, R.âJ.âG.; Ju, L.; Junker, J.; Juste, V.; Kalaghatgi, C.âV.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J.âB.; Kao, Y.; Kapadia, S.âJ.; Kapasi, D.âP.; Karat, S.; Karathanasis, C.; Karki, S.; Kashyap, R.; Kasprzack, M.; Kastaun, W.; Katsanevas, S.; Katsavounidis, E.; Katzman, W.; Kaur, T.; Kawabe, K.; KĂ©fĂ©lian, F.; Keitel, D.; Key, J.âS.; Khadka, S.; Khalili, F.âY.; Khan, S.; Khazanov, E.âA.; Khetan, N.; Khursheed, M.; Kijbunchoo, N.; Kim, C.; Kim, J.âC.; Kim, K.; Kim, W.âS.; Kim, Y.-M.; Kimball, C.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J.âS.; Kleybolte, L.; Klimenko, S.; Knee, A.âM.; Knowles, T.âD.; Knyazev, E.; Koch, P.; Koekoek, G.; Koley, S.; Kolitsidou, P.; Kolstein, M.; Komori, K.; Kondrashov, V.; Kontos, A.; Koper, N.; Korobko, M.; Kovalam, M.; Kozak, D.âB.; Kringel, V.; Krishnendu, N.âV.; KrĂłlak, A.; Kuehn, G.; Kuei, F.; Kuijer, P.; Kumar, A.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuns, K.; Kuwahara, S.; Lagabbe, P.; Laghi, D.; Lalande, E.; Lam, T.âL.; Lamberts, A.; Landry, M.; Lane, B.âB.; Lang, R.âN.; Lange, J.; Lantz, B.; La Rosa, I.; Lartaux-Vollard, A.; Lasky, P.âD.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lecoeuche, Y.âK.; Lee, H.âM.; Lee, H.âW.; Lee, J.; Lee, K.; Lehmann, J.; LemaĂźtre, A.; Leroy, N.; Letendre, N.; Levesque, C.; Levin, Y.; Leviton, J.âN.; Leyde, K.; Li, A.âK.âY.; Li, B.; Li, J.; Li, T.âG.âF.; Li, X.; Linde, F.; Linker, S.âD.; Linley, J.âN.; Littenberg, T.âB.; Liu, J.; Liu, K.; Liu, X.; Llamas, F.; Llorens-Monteagudo, M.; Lo, R.âK.âL.; Lockwood, A.; London, L.âT.; Longo, A.; Lopez, D.; Portilla, M. Lopez; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lott, T.âP.; Lough, J.âD.; Lousto, C.âO.; Lovelace, G.; Lucaccioni, J.âF.; LĂŒck, H.; Lumaca, D.; Lundgren, A.âP.; Lynam, J.âE.; Macas, R.; MacInnis, M.; Macleod, D.âM.; MacMillan, I.âA.âO.; Macquet, A.; Hernandez, I. Magaña; MagazzĂč, C.; Magee, R.âM.; Maggiore, R.; Magnozzi, M.; Mahesh, S.; Majorana, E.; Makarem, C.; Maksimovic, I.; Maliakal, S.; Malik, A.; Man, N.; Mandic, V.; Mangano, V.; Mango, J.âL.; Mansell, G.âL.; Manske, M.; Mantovani, M.; Mapelli, M.; Marchesoni, F.; Marion, F.; Mark, Z.; MĂĄrka, S.; MĂĄrka, Z.; Markakis, C.; Markosyan, A.âS.; Markowitz, A.; Maros, E.; Marquina, A.; Marsat, S.; Martelli, F.; Martin, I.âW.; Martin, R.âM.; Martinez, M.; Martinez, V.âA.; Martinez, V.; Martinovic, K.; Martynov, D.âV.; Marx, E.âJ.; Masalehdan, H.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T.âJ.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Mateu-Lucena, M.; Matichard, F.; Matiushechkina, M.; Mavalvala, N.; McCann, J.âJ.; McCarthy, R.; McClelland, D.âE.; McClincy, P.âK.; McCormick, S.; McCuller, L.; McGhee, G.âI.; McGuire, S.âC.; McIsaac, C.; McIver, J.; McRae, T.; McWilliams, S.âT.; Meacher, D.; Mehmet, M.; Mehta, A.âK.; Meijer, Q.; Melatos, A.; Melchor, D.âA.; Mendell, G.; Menendez-Vazquez, A.; Menoni, C.âS.; Mercer, R.âA.; Mereni, L.; Merfeld, K.; Merilh, E.âL.; Merritt, J.âD.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P.âM.; Meylahn, F.; Mhaske, A.; Miani, A.; Miao, H.; Michaloliakos, I.; Michel, C.; Middleton, H.; Milano, L.; Miller, A.; Miller, A.âL.; Miller, B.; Millhouse, M.; Mills, J.âC.; Milotti, E.; Minazzoli, O.; Minenkov, Y.; Mir, Ll.âM.; Miravet-TenĂ©s, M.; Mishra, C.; Mishra, T.; Mistry, T.; Mitra, S.; Mitrofanov, V.âP.; Mitselmakher, G.; Mittleman, R.; Mo, Geoffrey; Moguel, E.; Mogushi, K.; Mohapatra, S.âR.âP.; Mohite, S.âR.; Molina, I.; Molina-Ruiz, M.; Mondin, M.; Montani, M.; Moore, C.âJ.; Moraru, D.; Morawski, F.; More, A.; Moreno, C.; Moreno, G.; Morisaki, S.; Mours, B.; Mow-Lowry, C.âM.; Mozzon, S.; Muciaccia, F.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, Soma; Mukherjee, Subroto; Mukherjee, Suvodip; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E.âA.; Murray, P.âG.; Musenich, R.; Muusse, S.; Nadji, S.âL.; Nagar, A.; Napolano, V.; Nardecchia, I.; Naticchioni, L.; Nayak, B.; Nayak, R.âK.; Neil, B.âF.; Neilson, J.; Nelemans, G.; Nelson, T.âJ.âN.; Nery, M.; Neubauer, P.; Neunzert, A.; Ng, K.âY.; Ng, S.âW.âS.; Nguyen, C.; Nguyen, P.; Nguyen, T.; Nichols, S.âA.; Nissanke, S.; Nitoglia, E.; Nocera, F.; Norman, M.; North, C.; Nuttall, L.âK.; Oberling, J.; OâBrien, B.âD.; OâDell, J.; Oelker, E.; Oganesyan, G.; Oh, J.âJ.; Oh, S.âH.; Ohme, F.; Ohta, H.; Okada, M.âA.; Olivetto, C.; Oram, R.; OâReilly, B.; Ormiston, R.âG.; Ormsby, N.âD.; Ortega, L.âF.; OâShaughnessy, R.; OâShea, E.; Ossokine, S.; Osthelder, C.; Ottaway, D.âJ.; Overmier, H.; Pace, A.âE.; Pagano, G.; Page, M.âA.; Pagliaroli, G.; Pai, A.; Pai, S.âA.; Palamos, J.âR.; Palashov, O.; Palomba, C.; Pan, H.; Panda, P.âK.; Pang, P.âT.âH.; Pankow, C.; Pannarale, F.; Pant, B.âC.; Panther, F.âH.; Paoletti, F.; Paoli, A.; Paolone, A.; Park, H.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, M.; Pathak, M.; Patricelli, B.; Patron, A.âS.; Paul, S.; Payne, E.; Pedraza, M.; Pegoraro, M.; Pele, A.; Penn, S.; Perego, A.; Pereira, A.; Pereira, T.; Perez, C.âJ.; PĂ©rigois, C.; Perkins, C.âC.; Perreca, A.; PerriĂšs, S.; Petermann, J.; Petterson, D.; Pfeiffer, H.âP.; Pham, K.âA.; Phukon, K.âS.; Piccinni, O.âJ.; Pichot, M.; Piendibene, M.; Piergiovanni, F.; Pierini, L.; Pierro, V.; Pillant, G.; Pillas, M.; Pilo, F.; Pinard, L.; Pinto, I.âM.; Pinto, M.; Piotrzkowski, K.; Pirello, M.; Pitkin, M.âD.; Placidi, E.; Planas, L.; Plastino, W.; Pluchar, C.; Poggiani, R.; Polini, E.; Pong, D.âY.âT.; Ponrathnam, S.; Popolizio, P.; Porter, E.âK.; Poulton, R.; Powell, J.; Pracchia, M.; Pradier, T.; Prajapati, A.âK.; Prasai, K.; Prasanna, R.; Pratten, G.; Principe, M.; Prodi, G.âA.; Prokhorov, L.; Prosposito, P.; Prudenzi, L.; Puecher, A.; Punturo, M.; Puosi, F.; Puppo, P.; PĂŒrrer, M.; Qi, H.; Quetschke, V.; Quitzow-James, R.; Raab, F.âJ.; Raaijmakers, G.; Radkins, H.; Radulesco, N.; Raffai, P.; Rail, S.âX.; Raja, S.; Rajan, C.; Ramirez, K.âE.; Ramirez, T.âD.; Ramos-Buades, A.; Rana, J.; Rapagnani, P.; Rapol, U.âD.; Ray, A.; Raymond, V.; Raza, N.; Razzano, M.; Read, J.; Rees, L.âA.; Regimbau, T.; Rei, L.; Reid, S.; Reid, S.âW.; Reitze, D.âH.; Relton, P.; Renzini, A.; Rettegno, P.; Rezac, M.; Ricci, F.; Richards, D.; Richardson, J.âW.; Richardson, L.; Riemenschneider, G.; Riles, K.; Rinaldi, S.; Rink, K.; Rizzo, M.; Robertson, N.âA.; Robie, R.; Robinet, F.; Rocchi, A.; Rodriguez, S.; Rolland, L.; Rollins, J.âG.; Romanelli, M.; Romano, R.; Romel, C.âL.; Romero-RodrĂguez, A.; Romero-Shaw, I.âM.; Romie, J.âH.; Ronchini, S.; Rosa, L.; Rose, C.âA.; RosiĆska, D.; Ross, M.âP.; Rowan, S.; Rowlinson, S.âJ.; Roy, S.; Roy, Santosh; Roy, Soumen; Rozza, D.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadiq, J.; Sakellariadou, M.; Salafia, O.âS.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sanchez, E.âJ.; Sanchez, J.âH.; Sanchez, L.âE.; Sanchis-Gual, N.; Sanders, J.âR.; Sanuy, A.; Saravanan, T.âR.; Sarin, N.; Sassolas, B.; Satari, H.; Sathyaprakash, B.âS.; Sauter, O.; Savage, R.âL.; Sawant, D.; Sawant, H.âL.; Sayah, S.; Schaetzl, D.; Scheel, M.; Scheuer, J.; Schiworski, M.; Schmidt, P.; Schmidt, S.; Schnabel, R.; Schneewind, M.; Schofield, R.âM.âS.; Schönbeck, A.; Schulte, B.âW.; Schutz, B.âF.; Schwartz, E.; Scott, J.; Scott, S.âM.; Seglar-Arroyo, M.; Sellers, D.; Sengupta, A.âS.; Sentenac, D.; Seo, E.âG.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaffer, T.; Shahriar, M.âS.; Shams, B.; Sharma, A.; Sharma, P.; Shawhan, P.; Shcheblanov, N.âS.; Shikauchi, M.; Shoemaker, D.âH.; Shoemaker, D.âM.; ShyamSundar, S.; Sieniawska, M.; Sigg, D.; Singer, L.âP.; Singh, D.; Singh, N.; Singha, A.; Sintes, A.âM.; Sipala, V.; Skliris, V.; Slagmolen, B.âJ.âJ.; Slaven-Blair, T.âJ.; Smetana, J.; Smith, J.âR.; Smith, R.âJ.âE.; Soldateschi, J.; Somala, S.âN.; Son, E.âJ.; Soni, K.; Soni, S.; Sordini, V.; Sorrentino, F.; Sorrentino, N.; Soulard, R.; Souradeep, T.; Sowell, E.; Spagnuolo, V.; Spencer, A.âP.; Spera, M.; Srinivasan, R.; Srivastava, A.âK.; Srivastava, V.; Staats, K.; Stachie, C.; Steer, D.âA.; Steinlechner, J.; Steinlechner, S.; Stops, D.âJ.; Stover, M.; Strain, K.âA.; Strang, L.âC.; Stratta, G.; Strunk, A.; Sturani, R.; Stuver, A.âL.; Sudhagar, S.; Sudhir, V.; Suh, H.âG.; Summerscales, T.âZ.; Sun, H.; Sun, L.; Sunil, S.; Sur, A.; Suresh, J.; Sutton, P.âJ.; Swinkels, B.âL.; SzczepaĆczyk, M.âJ.; Szewczyk, P.; Tacca, M.; Tait, S.âC.; Talbot, C.âJ.; Talbot, C.; Tanasijczuk, A.âJ.; Tanner, D.âB.; Tao, D.; Tao, L.; MartĂn, E.âN. Tapia San; Taranto, C.; Tasson, J.âD.; Tenorio, R.; Terhune, J.âE.; Terkowski, L.; Thirugnanasambandam, M.âP.; Thomas, M.; Thomas, P.; Thompson, J.âE.; Thondapu, S.âR.; Thorne, K.âA.; Thrane, E.; Tiwari, Shubhanshu; Tiwari, Srishti; Tiwari, V.; Toivonen, A.âM.; Toland, K.; Tolley, A.âE.; Tonelli, M.; Torres-FornĂ©, A.; Torrie, C.âI.; e Melo, I. Tosta; TöyrĂ€, D.; Trapananti, A.; Travasso, F.; Traylor, G.; Trevor, M.; Tringali, M.âC.; Tripathee, A.; Troiano, L.; Trovato, A.; Trozzo, L.; Trudeau, R.âJ.; Tsai, D.âS.; Tsai, D.; Tsang, K.âW.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tsutsui, T.; Turbang, K.; Turconi, M.; Ubhi, A.âS.; Udall, R.âP.; Ueno, K.; Unnikrishnan, C.âS.; Urban, A.âL.; Utina, A.; Vahlbruch, H.; Vajente, G.; Vajpeyi, A.; Valdes, G.; Valentini, M.; Valsan, V.; van Bakel, N.; van Beuzekom, M.; van den Brand, J.âF.âJ.; Van Den Broeck, C.; Vander-Hyde, D.âC.; van der Schaaf, L.; van Heijningen, J.âV.; Vanosky, J.; van Remortel, N.; Vardaro, M.; Vargas, A.âF.; Varma, V.; VasĂșth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.âJ.; Venneberg, J.; Venugopalan, G.; Verkindt, D.; Verma, P.; Verma, Y.; Veske, D.; Vetrano, F.; Vicere', Andrea; Vidyant, S.; Viets, A.âD.; Vijaykumar, A.; Villa-Ortega, V.; Vinet, J.-Y.; Virtuoso, A.; Vitale, S.; Vo, T.; Vocca, H.; von Reis, E.âR.âG.; von Wrangel, J.âS.âA.; Vorvick, C.; Vyatchanin, S.âP.; Wade, L.âE.; Wade, M.; Wagner, K.âJ.; Walet, R.âC.; Walker, M.; Wallace, G.âS.; Wallace, L.; Walsh, S.; Wang, J.âZ.; Wang, W.âH.; Ward, R.âL.; Warner, J.; Was, M.; Washington, N.âY.; Watchi, J.; Weaver, B.; Webster, S.âA.; Weinert, M.; Weinstein, A.âJ.; Weiss, R.; Weldon, G.; Weller, C.âM.; Wellmann, F.; Wen, L.; WeĂels, P.; Wette, K.; Whelan, J.âT.; White, D.âD.; Whiting, B.âF.; Whittle, C.; Wilken, D.; Williams, D.; Williams, M.âJ.; Williamson, A.âR.; Willis, J.âL.; Willke, B.; Wilson, D.âJ.; Winkler, W.; Wipf, C.âC.; Wlodarczyk, T.; Woan, G.; Woehler, J.; Wofford, J.âK.; Wong, I.âC.âF.; Wu, D.âS.; Wysocki, D.âM.; Xiao, L.; Yamamoto, H.; Yang, F.âW.; Yang, L.; Yang, Yang; Yang, Z.; Yap, M.âJ.; Yeeles, D.âW.; Yelikar, A.âB.; Ying, M.; Yoo, J.; Yu, Hang; Yu, Haocun; ZadroĆŒny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, J.; Zhang, L.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhao, G.; Zhao, Yue; Zhou, R.; Zhou, Z.; Zhu, X.âJ.; Zimmerman, A.âB.; Zucker, M.âE.; Zweizig, J.Abbott, R.; Abbott, T. âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. âX.; Adya, V. âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P. âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S. âB.; Anderson, W. âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S. âV.; Ansoldi, S.; Antelis, J. âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M. âC.; Areeda, J. âS.; ArĂšne, M.; Arnaud, N.; Aronson, S. âM.; Arun, K. âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S. âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M. âK. âM.; Badger, C.; Bae, S.; Baer, A. âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S. âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J. âC.; Barbieri, C.; Barish, B. âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. âC.; Baylor, A. âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V. âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T. âF.; Bentley, J. âD.; Benyaala, M.; Bergamin, F.; Berger, B. âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I. âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi,
The population of merging compact binaries inferred using gravitational waves through GWTC-3
We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 and 1700 and the NSBH merger rate to be between 7.8 and 140 , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 and 44 at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from to . We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 . We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above . The rate of BBH mergers is observed to increase with redshift at a rate proportional to with for . Observed black hole spins are small, with half of spin magnitudes below . We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run
We present a search for dark photon dark matter that could couple to
gravitational-wave interferometers using data from Advanced LIGO and Virgo's
third observing run. To perform this analysis, we use two methods, one based on
cross-correlation of the strain channels in the two nearly aligned LIGO
detectors, and one that looks for excess power in the strain channels of the
LIGO and Virgo detectors. The excess power method optimizes the Fourier
Transform coherence time as a function of frequency, to account for the
expected signal width due to Doppler modulations. We do not find any evidence
of dark photon dark matter with a mass between eV/, which corresponds to frequencies between 10-2000
Hz, and therefore provide upper limits on the square of the minimum coupling of
dark photons to baryons, i.e. dark matter. For the
cross-correlation method, the best median constraint on the squared coupling is
at eV/; for the
other analysis, the best constraint is at eV/. These limits improve upon those obtained
in direct dark matter detection experiments by a factor of for
eV/, and are, in absolute terms, the
most stringent constraint so far in a large mass range eV/.Comment: 20 pages, 7 figure
A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
Search for subsolar-mass black hole binaries in the second part of Advanced LIGOâs and Advanced Virgoâs third observing run
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2â1.0 M and mass
ratio q â„ 0.1 in Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo data collected
between 2019 November 1, 15:00 UTC and 2020 March 27, 17:00 UTC. No signals were detected. The most significant candidate
has a false alarm rate of 0.2 yrâ1. We estimate the sensitivity of our search over the entirety of Advanced LIGOâs and Advanced
Virgoâs third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one
subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black
holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the
merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the
PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH 0.6 (at 90 per cent confidence)
in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions, we are unable to rule out fPBH = 1.
For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes,
we find an upper bound fDBH < 10â5 on the fraction of atomic dark matter collapsed into black holes
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGOâVirgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTCâ2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
- âŠ