71 research outputs found

    From Wellbeing to Social Media and Back:A Multi-Method Approach to Assessing the Bi-Directional Relationship Between Wellbeing and Social Media Use

    Get PDF
    Literature concerning the relationship between social media use and wellbeing is inconsistent in its findings, and most research has focused on time spent on social media rather than on what emerging adults do there, with whom and why. Here, we investigated whether momentary social stress affects emerging adults' social media use, and whether this social media use relates to subsequent changes in wellbeing. We implemented a multi-method paradigm utilising objective and self-report data to investigate how social stress relates to how (much) and why emerging adults use social media. We report on findings based on 114 17-25-year-old emerging adults recruited on university campus. Our findings suggest that social stress does not affect adolescents' subsequent social media use and that there is no relationship between social media use after stress and changes in momentary wellbeing. Our work illustrates the need for detailed approaches in social media and psychological wellbeing research.</p

    Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase

    Get PDF
    Minor histocompatibility antigens are the main targets of donor-derived T-cells after allogeneic stem cell transplantation. Identification of these antigens and understanding their biology are a key requisite for more insight into how graft vs. leukemia effect and graft vs. host disease could be separated. We here identified four new HLA class II-restricted minor histocompatibility antigens using whole genome association scanning. For one of the new antigens, i.e., LB-PIP4K2A-1S, we measured strong T-cell recognition of the donor variant PIP4K2A-1N when pulsed as exogenous peptide, while the endogenously expressed variant in donor EBV-B cells was not recognized. We showed that lack of T-cell recognition was caused by intracellular cleavage by a protease named asparagine endopeptidase (AEP). Furthermore, microarray gene expression analysis showed that PIP4K2A and AEP are both ubiquitously expressed in a wide variety of healthy tissues, but that expression levels of AEP were lower in primary acute myeloid leukemia (AML). In line with that, we confirmed low activity of AEP in AML cells and demonstrated that HLA-DRB1*03:01 positive primary AML expressing LB-PIP4K2A-1S or its donor variant PIP4K2A-1N were both recognized by specific T-cells. In conclusion, LB-PIP4K2A-1S not only represents a novel minor histocompatibility antigen but also provides evidence that donor T-cells after allogeneic stem cell transplantation can target the autologous allelic variant as leukemia-associated antigen. Furthermore, it demonstrates that endopeptidases can play a role in cell type-specific intracellular processing and presentation of HLA class II-restricted antigens, which may be explored in future immunotherapy of AML

    A Polymorphism in the Splice Donor Site of ZNF419 Results in the Novel Renal Cell Carcinoma-Associated Minor Histocompatibility Antigen ZAPHIR

    Get PDF
    Nonmyeloablative allogeneic stem cell transplantation (SCT) can induce remission in patients with renal cell carcinoma (RCC), but this graft-versus-tumor (GVT) effect is often accompanied by graft-versus-host disease (GVHD). Here, we evaluated minor histocompatibility antigen (MiHA)-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI). One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT

    Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells

    Get PDF
    Conventional dendritic cell (DC) vaccine strategies, in which DCs are loaded with antigens ex vivo, suffer biological issues such as impaired DC migration capacity and laborious GMP production procedures. In a promising alternative, antigens are targeted to DC-associated endocytic receptors in vivo with antibody–antigen conjugates co-administered with toll-like receptor (TLR) agonists as adjuvants. To combine the potential advantages of in vivo targeting of DCs with those of conjugated TLR agonists, we generated a multifunctional antibody construct integrating the DC-specific delivery of viral- or tumor-associated antigens and DC activation by TLR ligation in one molecule. We validated its functionality in vitro and determined if TLR ligation might improve the efficacy of such a molecule. In proof-of-principle studies, an αCD40 antibody containing a CMV pp65-derived peptide as an antigen domain (αCD40CMV) was genetically fused to the TLR5-binding D0/D1 domain of bacterial flagellin (αCD40.FlgCMV). The analysis of surface maturation markers on immature DCs revealed that fusion of flagellin to αCD40CMV highly increased DC maturation (3.4-fold elevation of CD80 expression compared to αCD40CMV alone) by specifically interacting with TLR5. Immature DCs loaded with αCD40.FlgCMV induced significantly higher CMVNLV-specific T cell activation and proliferation compared to αCD40CMV in co-culture experiments with allogeneic and autologous T cells (1.8-fold increase in % IFN-γ/TNF-α+ CD8+ T cells and 3.9-fold increase in % CMVNLV-specific dextramer+ CD8+ T cells). More importantly, we confirmed the beneficial effects of flagellin-dependent DC stimulation using a tumor-specific neoantigen as the antigen domain. Specifically, the acute myeloid leukemia (AML)-specific mutated NPM1 (mNPM1)-derived neoantigen CLAVEEVSL was delivered to DCs in the form of αCD40mNPM1 and αCD40.FlgmNPM1 antibody constructs, making this study the first to investigate mNPM1 in a DC vaccination context. Again, αCD40.FlgmNPM1-loaded DCs more potently activated allogeneic mNPM1CLA-specific T cells compared to αCD40mNPM1. These in vitro results confirmed the functionality of our multifunctional antibody construct and demonstrated that TLR5 ligation improved the efficacy of the molecule. Future mouse studies are required to examine the T cell-activating potential of αCD40.FlgmNPM1 after targeting of dendritic cells in vivo using AML xenograft models

    The Epstein-Barr Virus Glycoprotein gp150 Forms an Immune-Evasive Glycan Shield at the Surface of Infected Cells

    Get PDF
    Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle

    Islet-Specific CTL Cloned from a Type 1 Diabetes Patient Cause Beta-Cell Destruction after Engraftment into HLAA2 Transgenic NOD/SCID/IL2RG Null Mice

    Get PDF
    Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D) and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP). HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP(265-273)-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rγ(null) mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulitis. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies

    A comparison of PVS and Isabelle/HOL

    Get PDF
    Contains fulltext : 18686_compofpva.pdf ( ) (Open Access)18 p

    Toward improved methods in social media research.

    No full text
    Both academic and public interest in social media and their effects have increased dramatically over the last decade. In particular, a plethora of studies have been conducted that aimed to uncover the relationship between social media use and youth well-being, fueled by recent concerns that declines in youth well-being may well be caused by a rise in digital technology use. However, reviews of the field strongly suggest that the picture may not be as clear-cut as previously thought, with some studies suggesting positive effects, and some studies suggesting negative effects on youth well-being. To shed light on this ambiguity, we have conducted a narrative review of 94 social media use and well-being studies. A number of patterns in methodological practices in the field have now become apparent: Self-report measures of general statistics around social media use dominate the field, which furthermore often falls short in terms of ecological validity and sufficient use of experimental designs that would enable causal inference. We go on to discuss why such practices are problematic in some cases, and more importantly, which concrete improvements can be made for future studies that aim to investigate the relationship between social media use and well-being. (PsycInfo Database Record (c) 2022 APA, all rights reserved

    Everyone does it—differently: A window into emerging adults’ smartphone use

    Get PDF
    Abstract Concerns regarding smartphones’ and social media’s impact on youth remain high amidst a growing realization that current research is not designed to confirm (or refute) such concerns. This study aims to answer fundamental questions regarding youths’ use of smartphones, by implementing a novel user-centric research method. The smartphone use of 114 emerging adults was recorded, followed by in-depth interviews that incorporated the recording and in-app information to help participants recall their behaviours, motivations, and feelings. Results indicate that smartphone use is indeed ubiquitous; 88 out of 114 participants started using their smartphone as soon as they were left alone. However, the findings of this study also demonstrate great diversity in smartphone use, in e.g. social media platforms used and motivations for using different apps. These results illustrate that it no longer seems sensible to refer to “screen time” as if it represents a homogeneous phenomenon across youth. Additionally, preliminary indications have been found of relationships between individual differences in mental health indices and variations in smartphone use. The current study provides new insights into youths’ smartphone use and its relationship with wellbeing

    An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool

    No full text
    In the current era of T cell-based immunotherapies, it is crucial to understand which types of MHC-presented T cell antigens are produced by tumor cells. In addition to linear peptide antigens, chimeric peptides are generated through proteasome-catalyzed peptide splicing (PCPS). Whether such spliced peptides are abundantly presented by MHC is highly disputed because of disagreement in computational analyses of mass spectrometry data of MHC-eluted peptides. Moreover, such mass spectrometric analyses cannot elucidate how much spliced peptides contribute to the pool of immunogenic antigens. In this Perspective, we explain the significance of knowing the contribution of spliced peptides for accurate analyses of peptidomes on one hand, and to serve as a potential source of targetable tumor antigens on the other hand. Toward a strategy for mass spectrometry independent estimation of the contribution of PCPS to the immunopeptidome, we first reviewed methodologies to identify MHC-presented spliced peptide antigens expressed by tumors. Data from these identifications allowed us to compile three independent datasets containing 103, 74, and 83 confirmed T cell antigens from cancer patients. Only 3.9%, 1.4%, and between 0% and 7.2% of these truly immunogenic antigens are produced by PCPS, therefore providing a marginal contribution to the pool of immunogenic tumor antigens. We conclude that spliced peptides will not serve as a comprehensive source to expand the number of targetable antigens for immunotherapies
    corecore