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A b s tra c t. There is an overwhelming number of different proof tools 
available and it is hard to find the right one for a particular application. 
Manuals usually concentrate on the strong points of a proof tool, but to 
make a good choice, one should also know (1) which are the weak points 
and (2) whether the proof tool is suited for the application in hand. This 
paper gives an initial impetus to a consumers’ report on proof tools.
The powerful higher-order logic proof tools PVS and Isabelle are com
pared with respect to several aspects: logic, specification language, prover, 
soundness, proof manager, user interface (and more). The paper con
cludes with a list of criteria for judging proof tools, it is applied to both 
PVS and Isabelle.
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1 Introduction

There is an overwhelming number of different proof tools available (e.g. in the 
Database of Existing Mechanised Reasoning Systems one can find references to 
over 60 proof tools [Dat]). All have particular applications th a t they are espe
cially suited for. Introductionary papers on proof tools usually emphasise their 
strong points by impressive examples. But, if one really wishes to  start using 
one particular proof tool, this information is usually not enough. To make the 
right choice, one should also know (1) which are the weak points of the proof 
tool and (2) whether the proof tool is suited for the application in hand. The 
choice of a proof tool is very important: it can easily take half a year before one 
fully masters a tool and is able to  work on significant applications.

It would be desirable to  have some assistance in choosing the appropriate 
proof tool. When one wishes to  buy a toaster, there is also a wide choice, but one 
is assisted by the reports from consumers’ organisations. It is desirable to  have
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similar consumers’ reports for proof tools. Such reports should not summarise 
the manuals, but they should be based on practical experience with these tools. 
It should discuss several im portant aspects from a users’ perspective. These 
aspects should be both theoretical (e.g. the logic used) and practical (e.g. the 
user interface). It also should contain a list of criteria on which all proof tools 
are judged. This consumers’ report can assist in selecting an appropriate proof 
tool, but it can also be interesting for people who are already using a particular 
proof tool (and do not have any plans to  change this), because knowing about 
other proof tools also helps understanding the proof tool one is usually working 
with.

We are aware th a t proof tools change in time and th a t such a consumers’ 
report can only have tem porary validity. However, it would be nice if it could 
have some influence on the direction in which proof tools are developing.

This paper gives the initial impetus to  such a report. It describes two proof 
tools, PVS [Sha96] and Isabelle [Pau94]. We have chosen PVS and Isabelle as 
the basis for our comparison, because both are known as powerful proof tools for 
higher-order logic, which have shown their capabilities in non-trivial applications. 
Both PVS and Isabelle are very complex tools and it is impossible to  take all 
features into account. Therefore, our opinion on the im portant advantages and 
disadvantages of working with PVS or Isabelle, is to  some extend subjective and 
influenced by our own histories and fields of research.

Section 1.1 briefly gives some background information on PVS and Isabelle. 
Next, Section 2 compares PVS and Isabelle/HOL. Section 3 discusses our ex
periences with PVS and Isabelle. Section 4 sketches what we think is the best 
of both tools. Finally, in Section 5 we apply a list of criteria to  both PVS and 
Isabelle.

We based our experiences on PVS version 2.417 and on Isabelle versions 94-8 
and 98.

R elated  W ork We are not the first to  compare different proof tools. A com
parison of ACL2, a first-order logic prover based on Lisp, and PVS based on 
the verification of the Oral Message algorithm is described in [You97]. HOL is 
compared to  PVS in the context of a floating-point standard [CM95]. In the first 
comparison, the specification language of PVS is described as too complex and 
sometimes confusing, while the second comparison is more enthusiastic about it. 
Gordon describes PVS from a HOL perspective [Gor95]. Other comparisons have 
been made between HOL and Isabelle/ZF (in the field of set theory) [AG95] and 
HOL and Coq [Zam97]. Three proof tool interfaces (including PVS) are com
pared from a human-computer interaction perspective in [MH96].

To the best of our knowledge, we are the first to  compare PVS and Is
abelle/HOL. Our comparison is not based on a particular example, but treats 
systematically several aspects of both tools.

1.1 Short overview  o f  P V S  and Isabelle

The P V S  Verification System is being developed at SRI International Computer 
Science Laboratory. Work on PVS started in 1990 and the first version was made
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available in 1993. A short overview of the history of the system can be found 
in [Rus]. PVS is written in Lisp and it is strongly integrated with (Gnu and X) 
Emacs. The source code is not freely available.

PVS has been applied to  several serious problems. For example to  specify and 
design fault-tolerant flight control systems, including a requirements specification 
for the Space Shuttle [CD96]. References to  more applications of PVS can be 
found in [Rus].

Isabelle is being developed in Cambridge, UK, and in Munich. The first 
version of the system was made available in 1986. Isabelle uses several ideas of 
the LCF prover [GMW79]: formulae are ML values, theorems are part of an 
abstract data  type and backward proving is supported by tactics and tacticals. 
The aim of the designers of Isabelle was to  develop a generic proof checker, 
supporting a variety of logics, with a high level of automation. Isabelle has been 
called the next 700 provers [Pau90]. Isabelle is written in ML, and the source 
code is freely available.

Isabelle is used in a broad range of applications: formalising mathematics 
(including semantics), logical investigations, program development, specification 
languages, and verification of programs or systems. References to  applications 
of Isabelle can be found in [Pfe].

2 A com parison of PV S and Isabelle/H O L

This section first describes several im portant aspects of a proof tool in general. 
The comparison of PVS and Isabelle will then be structured along these lines. 
The division is somewhat artificial, because strong dependencies exist between 
the various parts, but is helpful in the comparison. The emphasis will be on 
aspects th a t are im portant from a users’ perspective

The first aspect th a t we distinguish is the logic th a t is used by the tool. In 
this paper we will restrict ourselves to  (extensions of) typed higher-order logic.

Strongly related with the logic is the specification  language. It is very 
im portant to  have a good specification language, because a significant part of a 
verification effort comes down to specifying what one actually wishes to  verify. 
It is not very useful to  have a fully verified statem ent, if it is not clear what the 
statem ent means.

The next aspect th a t we distinguish is the prover. An im portant issue for the 
prover is which proof commands (tactics) are available (i.e. which steps can be 
taken in a proof). Strongly related with this is the choice of a tactica l language. 
Tacticals or proof strategies are functions which build new proof commands, us
ing more basic ones. A sophisticated tactical language significantly improves the 
power of a prover. Another im portant aspect is whether decision  procedures  
(such as for linear arithmetic and for abstract data  types) are available.

A next aspect is the structure of the tool, i.e. whether there is a small kernel 
which does all logical inferences. When the code of the kernel is available (and 
small) it is possible to  convince oneself of the soundness of the tool.
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Another component is the p roof m anager, which determines e.g. how the 
current subgoals are displayed, whether the proof trace is recorded and how 
proof commands can be undone.

Theoretically non-existent, but very im portant for the actual use of a tool, 
is the user interface. Of course this does not influence the “computing power” 
of the tool, but a good user interface can significantly increase the effectiveness 
and usability of a proof tool.

2.1 T he logic

P V S  PVS implements classical typed higher-order logic, extended with pred
icate subtypes and dependent types. PVS has many built-in types, such as 
booleans, lists, reals and integers; standard operations on these types are also 
hard-coded in the tool. Type constructors are available to  build complex types 
e.g. function types, product types, records (labelled products) and recursively- 
defined abstract data  types. The use of predicate subtypes and dependent types 
will be explained in more detail below.

Isabelle Isabelle has a meta-logic, which is a fragment of higher-order logic. 
Formulae in the meta-logic are build using implication =>, universal quantifica
tion / \  and equality = . All other logics (the object logics) are represented in this 
meta-logic. Examples of object logics are first-order logic, the Barendregt cube, 
Zermelo-Fraenkel set theory and (typed) higher-order logic.

In this paper we will restrict attention to  typed higher-order logic (HOL) as 
object logic. The formalisation of HOL in Isabelle relies heavily on the meta-logic. 
HOL uses the polymorphic type system of the meta-logic. In its turn , the type 
system of the meta-logic is similar to  the type system of ML, the implementation 
language. Implication, quantification and equality are immediately defined in 
terms of the meta-logic. Together with some appropriate axioms, these form the 
basis for the higher-order logic theory. All other definitions, theorems and axioms 
are formulated in terms of these basic constructs.

P red icate su btypes and dep en dent typ es Predicate subtypes and depen
dent types as in PVS are not common in mechanical proof checkers, but they 
can be very useful in writing down a succinct and correct specification.

A predicate subtype is a new type constructed from an existing type, by
collecting all the elements in the existing type th a t satisfy the predicate. Perhaps, 
the most famous basic example of a predicate subtype is the type of non-zero- 
numbers. This type is used in the declaration of the division operator in PVS. 
The code below1 is a fragment of the PVS prelude (which contains the theories 
th a t are built-in to  the PVS system).

nonzero_real: NONEMPTY_TYPE = {r: real I r /= 0} */, /= is inequality

+, * : [real, real -> real]
/ : [real, nonzero_real -> real]

1 All examples in this paper are available at 
http://www.cs.kun.nl/ marieke/Comparison.html.
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Ex_Array[T:TYPE]: THEORY 
BEGIN

Ex_Array: TYPE = [# length : nat,
val : [below(length) -> T ]

#]
END Ex_Array

Fig. 1. Dependent typing in PVS

When the division operator is used in a specification, type checking will require 
tha t the denominator is nonzero. As this is not decidable in general, a so-called 
Type Correctness Condition (TCC) is generated, which forces the user to  prove 
th a t the denominator is indeed nonzero. A theory is not completely verified 
unless all of its type correctness conditions have been proven. In practice, most 
of the TCCs can be proven automatically by the tool. The use of predicate 
subtypes improves the readability of a specification and helps in detecting many 
semantical errors, as the user can state explicitly all the type constraints. Carreno 
and Miner come to  the same conclusion in [CM95].
As mentioned, PVS offers another typing facility namely dependent typing. In 
Figure 2.1 a theory of arrays is depicted. The type Ex_Array is a record with 
two fields: len gth  a natural number denoting the length of the array, and v a l a 
function denoting the values at each position in the array. The domain of v a l is 
the predicate subtype below (len gth ) of the natural numbers less than length. 
The type of v a l thus depends on the actual length of the array2.

2.2 T he specification  language

P V S  The specification language of PVS is rich, containing many different type 
constructors, predicate subtypes and dependent types. As an example, a spec
ification of the quicksort algorithm can be found in Figure 2. We discuss some 
specific points.

• PVS has a param etrised  m odule system. A specification is usually divided 
in several theories and each theory can be parametrised with both types and 
values. Theories can import (multiple) other theories from every point in the 
theory, so th a t a value or type th a t has just been declared or defined can 
immediately be used as an actual parameter.
Polymorphism is not available in PVS, but it is approximated by theories 
with type parameters. To define a polymorphic function, one can put it 
in a theory which is parametrised with the type variables of the function. 
However, this approach is not always convenient, because when a theory is 
imported all parameters should have a value, thus when a function does not 
use all type parameters of a theory, the unused types should still get some 
instantiation.

2 Dependent typing and predicate subtyping in general are separate matters, but in
PVS dependent types can only be constructed using predicate subtypes.
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sort[T:TYPE,<=: [T,T->bool]] : THEORY */, parametrised theory 
BEGIN

ASSUMING */, assuming clause
total: ASSUMPTION total_order?(<=) */, infix operator

ENDASSUMING

1 : VAR list[T]
e : VAR T

sorted(l) : RECURSIVE bool = */, recursive definitions
IF null?(l) OR null?(cdr(1)) */, with measure 
THEN true
ELSE car(1) <= car(cdr(l)) AND sorted(cdr(l))
ENDIF

MEASURE length(1)

qsort(l): RECURSIVE list[T] =
IF null?(1) THEN null 
ELSE LET piv = car(l)

IN append(qsort(filter(cdr(l),(LAMBDA e: e <= piv))), 
cons(piv,
qsort(filter(cdr(l),(LAMBDA e: NOT e <= piv)))))

ENDIF
MEASURE length(1)

qsort_sorted: LEMMA sorted(qsort(1))

END sort

Fig. 2. A specification of the quicksort algorithm in PVS

• PVS has a rich overloading structure. Different functions can have the 
same name as long as they have different input types. Different functions in 
different theories can have the same name, even when they have the same 
(input) type. The theory name can be used as a prefix to  distinguish between 
them. Names for theorems and axioms can be reused as well, as long as they 
are in different theories. Again, the theory name can be used to  disambiguate 
this.

• A theory can start with a so-called assum ing clause, where one states 
assumptions, usually about the parameters of the theory. These assumptions 
are used as a fact in the rest of the theory. When the theory is imported, 
TCCs are generated, which force the user to  prove th a t the assumptions hold 
for the actual parameters.

• R ecursive data  typ es and functions can be defined in PVS. An induc
tion principle and several standard functions, such as map and reduce, are 
automatically generated from an abstract data  type definition. PVS allows 
general recursive function definitions. All functions in PVS have to  be total,
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QSort = HOL + List + WF_Rel + (* theory importings *)

consts (* infix operators *)
"«=" :: "[’a, ’a] => bool" (infixl 65)

axclass (* axiomatic type class *)
ordclass < term 
total_ord "total (op <<=)"

consts (* primitive recursion *)
sorted:: "[(’a :: ordclass) list] => bool" 

primrec sorted list
sorted_nil "sorted [] = True"
sorted_cons "sorted (x#xs) = ((case xs of [] => True I y#ys => x <<= y) &

sorted xs)"

consts (* well-founded recursion *)
qsort :: "[(’a :: ordclass) list] => (’a :: ordclass) list" 

recdef
qsort "measure size"

"qsort [] = []"
"qsort (x # xs) = qsort [y : xs. y « =  x] <5

(x # qsort [y : xs. y <<= x])"

end

Fig. 3. A specification of the quicksort algorithm in Isabelle

therefore term ination of the recursive function has to  be shown, by giving a 
measure function which maps the arguments of the function to  a type with a 
well-founded ordering. The tool generates TCCs th a t force the user to  prove 
th a t this measure decreases with every recursive call.

• PVS has much fixed syntax. Many language constructs, such as IF . . . and 
CASES. . .  are built-in to  the language and the prover. There is a fixed list of 
symbols which can be used as infix operators; most common infix operators, 
such as + and <= are included in this list. Sometimes PVS uses syntax which 
is not the most common, e.g. [A,B] for a Cartesian product of types A and 
B and ( : x , y , z : )  for a list of values x,y,z.

Isabelle The specification language of Isabelle is inspired by functional pro
gramming languages (especially ML). In Figure 3 the quicksort example is shown 
in Isabelle syntax. We discuss some specific aspects.

• The m od u le sy stem  allows importing multiple other theories, but it does 
not permit parametrisation. The type parameters of PVS are not necessary 
in Isabelle, because functions can be declared polymorphically. The value 
parameters of PVS can be thought of as an implicit argument for all functions 
in the theory. Making this argument explicit could be the way to  ’mimic’ the 
value parameters in Isabelle.
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• A xiom atic typ e classes [Wen95,Wen97] are comparable to  the assuming 
clause in PVS, and type classes in functional programming [WB89]. In a 
type class polymorphic declarations for functions are given. Additionally, in 
axiomatic type classes required properties about these functions can also be 
stated. These properties can be used as axioms in the rest of the theory. The 
user can make different instantiations of these axiomatic type classes, by
giving appropriate bodies for the functions and proving th a t the properties 
hold. Notice th a t a limited form of overloading can be realised using Isabelle’s 
axiomatic type classes, only for functions with a single polymorphic type.

• Isabelle automatically generates induction principles for each recursive 
data  type. The user can give inductive and coinductive function def
initions. There is a special construct to  define primitive recursive functions. 
Well-founded recursive functions can be defined as well, together with a 
measure function to  show their termination.

• Isabelle syntax  can easily be extended. In particular, Isabelle allows the user 
to  define arbitrary infix and mixfix operators. There is a powerful facility to 
give priorities and to  describe a preferred syntax. This allows the user to 
define th a t lists should be represented for input and output as e.g. [1,2,3] 
while internally this is represented as (cons 1 (cons 2 (cons 3 n i l ) ) ) .  
Language constructs like i f . . .th en . . .e l s e  are defined explicitly in terms 
of the basic operators.

2.3 T he pro ver

P V S  PVS represents theorems using the sequent calculus. Every subgoal con
sists of a list of assumptions A±, . . .  An and a list of conclusions B \ , . . . ,  B m. One 
should read this as: the conjunction of the assumptions implies the disjunction 
of the conclusions i.e. A± A . . .  A A n =$■ B \ V . . .  V B m.

The proof commands of PVS can be divided into three different categories3.

• C reative p roof com m ands. These are the proof steps one also writes 
down explicitly when writing a proof by hand. Examples of such commands 
are induct (start to  prove by induction), in s t  (instantiate a universally- 
quantified assumption, or existentially quantified conclusion), lemma (use 
a theorem, axiom or definition) and case (make a case distinction). For 
most commands, there are variants which increase the degree of automation, 
e.g. the command in s t?  tries to  find an appropriate instantiation itself.

• B ureaucratic p roof com m ands. When writing a proof by hand, these 
steps usually are done implicitly. Examples are f la t t e n  (disjunctive sim
plification) expand (expanding a definition), rep lace (replace a term  by 
an equivalent term) and hide (hide assumptions or conclusions which have 
become irrelevant).

• Pow erful p roof com m ands. These are the commands th a t are intended to 
handle all “trivial” goals. The basic commands in this category are s im p lify

3 This division is made by the authors, not by the developers of PVS. Nevertheless it
resembles the division made in [COR+95].
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and prop (simplification and propositional reasoning). A more powerful ex
ample is a sser t. This uses the simplification command and the built-in 
decision procedures and does autom atic (conditional) rewriting. PVS has 
some powerful decision procedures, dealing, among other things, with linear 
arithmetic. The most powerful command is grind, which unfolds definitions, 
skolemizes quantifications, lifts if-then-elses and tries to  instantiate and sim
plify the goal.

Isabelle The basic proof method of Isabelle is resolution. The operation ES is 
the standard resolution operation. It unifies the conclusion of its first argument 
with the first assumption of the second argument. As an example, when doing 
resolution with ([?P] 4 ? P V  IQ) and ([?-R; ?£>] =4- 1R  A IS),  this results in the 
theorem [?P; ?S] (?P V IQ) A IS.

Isabelle supports both forward and backward proving, although its empha
sise lies on backward proving by supplying many useful tactics for it. A tactic 
transforms the proof goal into several subgoals and gives a justification for this 
transformation.

In Isabelle, every goal consists of a list of assumptions and one conclusion. 
The goal \A \ \ A 2 ; . . .  ; -4„] => B  should be read as Ai  =£- (A? =4- . . .  (An =4- B)). 
Notice th a t =£- is the implication of the meta-logic.

Isabelle tactics usually do not return a single next state, but a lazy list with 
possible next states. Many tactics try  to  find a useful instantiation themselves 
and return a lazy list containing (almost) all possible instantiations (in a suitable 
order). When the first instantiation is not satisfactory the next instantiation can 
be tried with back. This possibility is mainly used by powerful tactics.

The proof commands of Isabelle can be divided in several categories as well, 
although these are different from the categories used earlier for PVS.

• R eso lu tion  is the basis for many tactics. The standard one is resolve_tac. 
It tries to  unify the conclusion of a theorem with the conclusion of a subgoal. 
If this succeeds, it creates new subgoals to  prove the assumptions of the 
theorem (after substitution).

• Another basic tactic is assume.tac, which tries to  unify the conclusion with 
one of the assumptions.

• Induction  is done by ind u ct.tac , which does resolution with an appropri
ate induction rule.

• U se an axiom  or th eorem  by adding it to  the assumption list. There 
are several variants: with and without instantiation, in combination with 
resolution etc.

• S im plification  tactics for (conditional) rewriting. For every logic a so-called 
simplification set can be build. This set contains theorems, axioms and def
inition, th a t can be used to  rewrite a goal. It is possible to  extend the sim
plification set (temporarily or permanent).
Isabelle’s simplifier uses a special strategy to  handle permutative rewrite 
rules, i.e rules where the left and right hand side are the same, up to  re
naming of variables. A standard lexical order on term s is defined and a
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permutative rewrite rule only is applied if this decreases the term , according 
to  this order. The most common example of a permutative rewrite rule is 
commutativity (x  © y = y © x). W ith normal rewriting (as is done by PVS) 
this rule will loop, but ordered rewriting avoids this.

• C lassical reasoning is another powerful proof facility of Isabelle. There 
are various tactics for classical reasoning. One of them, b last_ tac, uses a 
tableau prover, coded directly in ML. The proof tha t is generated is then 
reconstructed in Isabelle.

• B ureaucratic tactics are also available, such as r o ta te .ta c , which changes 
the order of the assumptions. This can be necessary for rewriting with the 
assumptions, because this is done from top to  bottom.

A theorem can contain so-called meta-variables, which can be bound while prov
ing it. As an example, consider the specification of quicksort (Figure 3). Suppose 
th a t we instantiated the axiomatic type class with the natural numbers (defining 
« =  as <) and th a t the definition of quicksort is automatically rewritten. Now 
we can state for example the following goal

goal QSort.thy "qsort[4, 2, 3] = ?x";

where ?x is a meta-variable. When simplifying this goal, the meta-variable 
is bound to  [2 ,3 ,4 ]  (and the theorem is proven). The theorem is stored as 
qsort [4 , 2 , 3] = [2 , 3 , 4] This feature makes Isabelle well-suited for trans
formational programming [AB96] and writing a Prolog interpreter [Pau94].

T actical language A tactical (or proof strategy) is a function to  build complex 
tactics (or proof commands) using more basic ones. A well-known example is 
the tactical then. This tactical gets two tactics as arguments and applies them 
sequentially to  the goal.

PVS has a very limited proof strategy language; roughly it is only possible 
to  concatenate and repeat proof commands in several ways. When one wishes to 
go beyond this, for example to  inspect the goal, this should be done in Lisp. The 
Lisp data  structure th a t contains the proof goal is not officially documented; 
some accessor functions are known to work but the developers explicitly allow 
themselves to  change PVS at this level of implementation. Probably it is possible 
to  change the goal in Lisp without a logical justification.

In Isabelle the tactical language is ML, so a complete functional language 
is available. All logical inferences on terms of type thm (the theorems) are per
formed by a limited set of functions. In ML a type can be ’closed’, which means 
th a t a programmer can express th a t no other functions than a number of ’trusted’ 
functions are allowed to  manipulate values of this type (in this case: theorems). 
In this way the full power of ML can be used to  program proof strategies, and 
soundness is guaranteed via the interface.

P roving w ith  pow erful p roof com m ands Both PVS and Isabelle can do 
simple calculations quite fast. For instance the theorem below is proven in (al
most) zero time in PVS by (ASSERT), using the built-in integer arithmetic.
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calc: LEMMA 700 * 400 * 11 = 2 * 7 * 22 * 10000

In Isabelle/HOL we have a similar result. After loading the theories defining the 
integers we can prove the following goal in (almost) zero time using simplifica
tion. Note th a t integers have a sharp-sign # as prefix. Operations on integers are 
defined using their binary representation, so in contrast to  PVS, arithmetic is 
not part of the kernel, but defined in the logic.

goal Bin.thy "#700 * #400 * #11 = #2 * #7 * #22 * #10000";

Linear (and some non-linear) arithmetic has standard support in PVS and the 
next theorem is also proven with a single command.

arith: LEMMA 7 + x < 8 + x AND 2 * x * x < = 3 * x * x

In Isabelle a package to  cancel out common summands (and factors) is available.
It is loaded standardly for the naturals, but not for the integers. The following 
goal is proven in one step, using simplification.

goal Arith.thy " l + x < 2 + x " ;

A well-known [COR+95] example of the simplification procedures of PVS is the 
proof of the characterisation of the summation function. The theorem below is 
proven by a single command ( in d u c t-a n d -s im p lify  "k")

sum(k:nat): RECURSIVE nat =
IF k = 0 THEN 0 ELSE k + sum(k-l) ENDIF 

MEASURE k

sum_char: LEMMA sum(k) = k*(k+l)/2

An impressive example of the classical reasoner of Isabelle is the following the
orem, problem 41 of Pelletier. PVS can not prove this in one command, while 
Isabelle can, using the classical reasoner (B last_ tac).

(ALL z. EX y. ALL x. J x y = ( J x z & ( ~ J x x ) ) )  — > ~(EX z. ALL x. J x z)

2.4 S ystem  organisation  and soundness

P V S  The developers of PVS designed their prover to  be useful for real world 
problems. Therefore the specification language should be rich and the prover 
fast with a high degree of automation. To achieve this, powerful decision proce
dures were added to  PVS. However, these decision procedures sometimes cause 
soundness problems, thus the procedures are part of the kernel, which makes the 
kernel large and complex. Further, PVS once was considered to  be a prototype 
for a new SRI prover. Perhaps for these reasons PVS still seems to  contain a lot 
of bugs and frequently new bugs shows up. An overview of the known bugs at the 
moment can be seen on h t tp : / /w w w .c s l .s r i .c o m /h tb in /p v s /p v s -b u g - l i s t .
It would be desirable th a t the bugs in PVS would only influence completeness 
and not soundness. Unfortunately, this is not the case, as some recent proofs of
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true=false have shown [Owr]. Most bugs do not influence soundness, but they 
can be very annoying.

Because of the soundness bugs in the past, it is reasonable to  assume tha t 
PVS will continue to  contain soundness bugs. The obvious question thus arises, 
why use a proof tool th a t probably contains soundness bugs? Our answer is 
threefold:

PVS is still a very critical reader of proofs. PVS lets fewer mistakes slip 
through than many of our human colleagues (and PVS is much more patient), 
thus in comparing PVS to an average logician/mathematician PVS is much more 
precise and sceptic.

Furthermore, history tells us th a t the fixed soundness bugs are hardly ever 
unintentionally explored, we know of only a single case.

Thirdly, most mistakes in a system th a t is to  be verified are detected in 
the process of making a formal specification. Thus economically spoken, the 
specification is very im portant, and PVS has a expressive and human friendly 
specification language. Therefore when we specify a system in the language of 
PVS this gives extra confidence th a t the specification expresses what is ’m eant’.

A lot of effort has been put into the development of PVS. For this reason 
SRI does not make the code of PVS freely available. As a consequence, to  most 
users the structure of the tool is unknown and making extensions or bug fixes is 
impossible, although sometimes users go to  SRI to  implement a feature.

Isabelle Isabelle was developed from quite a different perspective. The main 
objective was to  develop a flexible and sound prover, and next to  develop pow
erful tactics, so th a t large proof steps could be taken at once. Isabelle seems 
to  be much more stable than PVS. It does not show unpredictable behaviour. 
Recently a new Isabelle version was released4. To our surprise some tactics (es
pecially Auto_tac) were changed, so th a t our old proofs really had to  be adapted, 
and not all of these changes were clearly documented.

2.5 T he p roof m anager

P V S  All proofs in PVS are done in a special proof mode. The tool manages 
which subgoals still have to  be proven and which steps are taken to  construct a 
proof, so it is not the users responsibility to  maintain the proof trace. Proofs are 
represented as trees. There is an T cl/T k  interface which gives a picture of the 
proof tree (see Figure 4). It helps the user to  see which branches of the proof 
are not proven yet. One can click on a turnstile to  see a particular subgoal, also 
the proof commands can be displayed in full detail.

When using a proof tool most of the time the theorems and specification 
are under construction, as the processes of specifying and proving are usually 
intermingled. The notion of “unproved theorem” allows to  concentrate on the 
crucial theorems first and prove the auxiliary theorems later. PVS keeps track 
of the status of proofs, e.g. whether it uses unproved theorems.

4 Isabelle98
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Fig. 4. Example of a Tcl/Tk proof tree

Lino num bers can be used in PVS to  spocifiy th a t a com m and should work 
only on some of the assum ptions/conclusions, e.g. (expand " f " 2) expands f  
in the  second conclusion. W hen a specification or theorem  is slightly changed 
(e.g. an conjuct is added), the line num bers in the goal often change. It would 
be more robust, if one could use com m ands expressing things like: expand all 
f s  w ith zero as first argum ent, and only expand f  in the assum ptions where 
function g occurs. This has an additional advantage, namely th a t intention of 
the proof step becomes clearer. The au thors have m ade their own Lisp functions 
to  calculate a list of line num bers th a t satisfy a simple regular expression. This 
is already helpful (ospcially in strategies), bu t m any extensions are possible. For 
example, in the  presence of overloading it would be useful to  expand fs  of a 
specific type.

I s a b e lle  Isabelle does not give elaborate proof support. The user has to  keep 
track  of everything h im /herself (including the undos). The proofs are structured  
linearly, there is ju st a list of all subgoals. This stim ulates the use of tacticals 
such as ALLGOALS, bu t it is not so easy to  see how “deep” or in which branch 
one is in a proof. On the o ther hand, in Isabelle it is possible to  undo an undo 
(or actually: a choplov. which steps back an a rb itra ry  num ber of levels, or to  a 
particu lar level). And even more, it is also possible to  look a t the subgoals a t an 
earlier level, w ithout undoing the proof.

2 .6  U s e r  in te r fa c e

P V S’s standard  user interface is b e tte r developed th an  Isabelle’s. It is is strongly 
in tegrated  w ith Ernacs. Recently, a batch  m ode was added to  PVS. The de facto  
interface for Isabelle is Isamodo (also based on Ernacs). There are some more 
advanced user interfaces based on T c l/T k . bu t they only work for particu lar 
versions of Isabelle.
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2.7  M anuals and support

PVS has a number of different manuals, but none of these is completely up-to- 
date. There is an introductionary manual with a fully elaborated (non-trivial) 
example to  get started. On the mailing list one can ask starters questions.

Isabelle also comes equipped with several manuals. These are more up-to-date 
and concise, but often they explain things very briefly (and sometimes cryptic). 
The introductionary manual does not really give an interesting example, and it 
is hard to  start using Isabelle, only on the basis of the manuals. The best way 
to  start is to  take the (annual) Isabelle course. There is good (personal) support 
from the developers. They usually reply very quickly (same day) on emails with 
questions and problems. We found th a t this was really helpful.

2.8 R u n tim e speed

We did not compare the speed of the tools because we think the game is not 
to  “run” a proof, but to  construct it. This construction consists of building a 
specification of a problem and proving appropriate theorems. This is hard and 
depends heavily on the user, his/her experience with the proof tool etc. We do 
mention though th a t the “experienced speed” of the two tools is comparable. 
By this we mean the time it takes to  type check a specification or to  execute a 
sm art tactic.

3 Our experiences

In this section we wish to  discuss in some detail our own, more personal, experi
ences. After using PVS for several years we became increasingly unhappy with 
it, because so many bugs appeared. Sometimes it felt th a t we would spend more 
time on working around small bugs, than on proving serious properties. In this 
period the first author visited Munich and became enthusiastic about Isabelle. 
However, reading the Isabelle manuals did not provide enough background to  get 
really started with it. Therefore, in September 1997 the second author visited 
the Isabelle course in Cambridge. After this course, it seemed relatively easy to 
start working seriously with Isabelle.

To start with a well-understood, but non-trivial example, the Tree Identi
fication Phase (T/Pj[DGRV97] of the 1394 protocol was selected, as the first 
author had already worked extensively on it using PVS. The first challenge was 
to  transform the PVS specification into Isabelle, because Isabelle’s specification 
language lacks e.g. records and function updates.

The next step was to  start proving. We are used to  PVS’s proof manager, 
which records all the steps we take in a proof. Isabelle only provides a so-called 
listener, which records everything the user types in (including the typos and steps 
th a t were undone later), so the proof has to  be filtered out. We experienced tha t 
it works faster to  copy the steps immediately than to  use the listener.

When we then really started proving, we noticed a big difference in the han
dling of conditional expressions (i.e. i f . . .  t h e n . .. e ls e ) . In PVS, conditionals
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are built-in and the prover knows how to deal with them. In Isabelle conditional 
expressions are explicitly defined and the prover does not have special facili
ties for them. We discussed this with Larry Paulson and Tobias Nipkow, which 
resulted in a solution for Isabelle94-8. In Isabelle98 more tactics to  deal with 
conditional expressions are standard available.

After proving some invariants over the TIP  protocol, we also studied whether 
a translation of object-oriented specifications into higher-order logic (part of a 
different project [HHJT98]) could be adapted to  Isabelle. In the translation to 
PVS we made extensive use of overloading and this caused serious difficulties. 
In discussions with the Isabelle developers we tried several solutions, but none 
of these were satisfactory. Isabelle98 has the possibility to  define different name 
spaces and this might help. Due to  time constraints and lack of documentation 
we did not investigate this option.

4 The best o f both worlds

When comparing PVS and Isabelle we realised th a t both tools had their advan
tages and disadvantages. Our ideal proof tool would combine the best of both 
worlds.

T he logic Predicate subtyping and dependent typing give so much extra expres
siveness and protection against semantical errors, th a t this should be supported. 
The loss of decidability of type checking is easily (and elegantly) overcome by 
the generation of TCCs and the availability of a proof checker.

The meta-logic of Isabelle gives the flexibility to  use different logics, even in a 
single proof. However, in our applications, we did not feel the need to  use a logic 
other than HOL and the interference with the meta-logic sometimes complicated 
matters.

T he specification  language The specification language should be readable, 
expressive and easily extendible. For function application, we have a slight pref
erence for the bracketless syntax of Isabelle.

It should be possible to  parametrise theories with values. We have a prefer
ence for type parametrised theories, because polymorphism is hard to  combine 
with overloading. A disadvantage of type inference, in combination with im
plicitly (universally) quantified variables, is th a t typos introduce new variables, 
and do not produce an error. As an example, suppose th a t one has declared a 
function myFunction : : nat => nat, but th a t by accident the following goal 
is typed in: "myFunction x < myFuntion (x+1) ". This is internally equivalent 
to: "ALL myFuntion. myFunction x < myFuntion (x+1) ". This error can only 
be detected by asking explicitly for the list of variables (and their types) in the 
goal.

T he prover The ideal prover has powerful proof commands for classical reason
ing and rewriting, including ordered rewriting. A tactic should return a lazy list 
of possible next states, as this is useful to  try  (almost) all possible instantiations.
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Also, decision procedures (for example for linear arithmetic) should be available. 
Preferably, these decision procedures are not built-in to  the kernel, but written 
in the tactical language, so th a t they can not cause soundness problems. The 
style of the interactive proof commands of PVS is preferred over th a t of Isabelle, 
because this is more intuitive. It is im portant to  have a structured tactical lan
guage, which allows the user to  access the goal. For this purpose, the structure 
of the goal should be well-documented.

S ystem  organisation  To ensure soundness of the proof tool, the system should 
have a small kernel. The code of the tool should be freely available, so th a t users 
can easily extend it for their own purposes and (if necessary) implement bug 
fixes.

T he p roof m anager and user interface The tool should keep track of the 
proof trace. Proofs are best represented as trees, because this is more natural, 
compared to  a linear structure. The tree representation also allows easy naviga
tion through the proof, supported by a visual representation of the tree. When 
replaying the proof, after changing the specification, the tool can detect for which 
branches the proof fails, thanks to  the tree representation.

5 Conclusions and future work

We tried to  describe some im portant aspects of PVS and Isabelle which are not 
in the ‘advertising of the tool’, but are im portant in making a decision on which 
tool to  use. To conclude, Figure 5 gives a list of criteria for judging a proof tool, 
filled in for PVS and Isabelle. This list is not complete and based on the available 
features of PVS and Isabelle and our work done with these proof tools. We hope 
th a t in the future users of other proof tools will produce a similar consumers’ 
test on “their” proof tool too, so th a t a broad overview of users’ experiences 
with different proof tools will be available.

Maybe such comparisons will lead to  a proof tool which combines the best 
of all available proof tools. Looking only at PVS and Isabelle, it would be de
sirable to  have a proof tool with the specification language, proof manager and 
user interface of PVS, but the soundness, flexibility and well-structuredness of 
Isabelle.
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