
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/18686

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16108228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/18686

A C om parison of PV S and Isabe lle /H O L

D a v i d G r i f f i o e n 1’2* M a r i e k e H u i s m a n 2

1 CWI, Amsterdam.
2 Computing Science Institute, Univ. Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands,
{marieke,davidg}@cs.kun.n l

A b s tra c t. There is an overwhelming number of different proof tools
available and it is hard to find the right one for a particular application.
Manuals usually concentrate on the strong points of a proof tool, but to
make a good choice, one should also know (1) which are the weak points
and (2) whether the proof tool is suited for the application in hand. This
paper gives an initial impetus to a consumers’ report on proof tools.
The powerful higher-order logic proof tools PVS and Isabelle are com
pared with respect to several aspects: logic, specification language, prover,
soundness, proof manager, user interface (and more). The paper con
cludes with a list of criteria for judging proof tools, it is applied to both
PVS and Isabelle.
1994 Mathematics Subject Classification: 03B35 Mechanisation of proof
and logical operations; 03B15 Higher-order logic and type-theory.
1998 Computing Reviews Classification System,: F.4.3 Formal Languages;
D.2.4 Software/Program Verification; F.3.1 Specifying and Verifying and
Reasoning about Programs.
Keywords and Phrases: Proof Tools, Isabelle/HOL, PVS.

1 Introduction

There is an overwhelming number of different proof tools available (e.g. in the
Database of Existing Mechanised Reasoning Systems one can find references to
over 60 proof tools [Dat]). All have particular applications th a t they are espe
cially suited for. Introductionary papers on proof tools usually emphasise their
strong points by impressive examples. But, if one really wishes to start using
one particular proof tool, this information is usually not enough. To make the
right choice, one should also know (1) which are the weak points of the proof
tool and (2) whether the proof tool is suited for the application in hand. The
choice of a proof tool is very important: it can easily take half a year before one
fully masters a tool and is able to work on significant applications.

It would be desirable to have some assistance in choosing the appropriate
proof tool. When one wishes to buy a toaster, there is also a wide choice, but one
is assisted by the reports from consumers’ organisations. It is desirable to have

Supported by the Netherlands Organisation for Scientific Research (NWO) under
contract SION 612-316-125.

similar consumers’ reports for proof tools. Such reports should not summarise
the manuals, but they should be based on practical experience with these tools.
It should discuss several im portant aspects from a users’ perspective. These
aspects should be both theoretical (e.g. the logic used) and practical (e.g. the
user interface). It also should contain a list of criteria on which all proof tools
are judged. This consumers’ report can assist in selecting an appropriate proof
tool, but it can also be interesting for people who are already using a particular
proof tool (and do not have any plans to change this), because knowing about
other proof tools also helps understanding the proof tool one is usually working
with.

We are aware th a t proof tools change in time and th a t such a consumers’
report can only have tem porary validity. However, it would be nice if it could
have some influence on the direction in which proof tools are developing.

This paper gives the initial impetus to such a report. It describes two proof
tools, PVS [Sha96] and Isabelle [Pau94]. We have chosen PVS and Isabelle as
the basis for our comparison, because both are known as powerful proof tools for
higher-order logic, which have shown their capabilities in non-trivial applications.
Both PVS and Isabelle are very complex tools and it is impossible to take all
features into account. Therefore, our opinion on the im portant advantages and
disadvantages of working with PVS or Isabelle, is to some extend subjective and
influenced by our own histories and fields of research.

Section 1.1 briefly gives some background information on PVS and Isabelle.
Next, Section 2 compares PVS and Isabelle/HOL. Section 3 discusses our ex
periences with PVS and Isabelle. Section 4 sketches what we think is the best
of both tools. Finally, in Section 5 we apply a list of criteria to both PVS and
Isabelle.

We based our experiences on PVS version 2.417 and on Isabelle versions 94-8
and 98.

R elated W ork We are not the first to compare different proof tools. A com
parison of ACL2, a first-order logic prover based on Lisp, and PVS based on
the verification of the Oral Message algorithm is described in [You97]. HOL is
compared to PVS in the context of a floating-point standard [CM95]. In the first
comparison, the specification language of PVS is described as too complex and
sometimes confusing, while the second comparison is more enthusiastic about it.
Gordon describes PVS from a HOL perspective [Gor95]. Other comparisons have
been made between HOL and Isabelle/ZF (in the field of set theory) [AG95] and
HOL and Coq [Zam97]. Three proof tool interfaces (including PVS) are com
pared from a human-computer interaction perspective in [MH96].

To the best of our knowledge, we are the first to compare PVS and Is
abelle/HOL. Our comparison is not based on a particular example, but treats
systematically several aspects of both tools.

1.1 Short overview o f P V S and Isabelle

The P V S Verification System is being developed at SRI International Computer
Science Laboratory. Work on PVS started in 1990 and the first version was made

2

available in 1993. A short overview of the history of the system can be found
in [Rus]. PVS is written in Lisp and it is strongly integrated with (Gnu and X)
Emacs. The source code is not freely available.

PVS has been applied to several serious problems. For example to specify and
design fault-tolerant flight control systems, including a requirements specification
for the Space Shuttle [CD96]. References to more applications of PVS can be
found in [Rus].

Isabelle is being developed in Cambridge, UK, and in Munich. The first
version of the system was made available in 1986. Isabelle uses several ideas of
the LCF prover [GMW79]: formulae are ML values, theorems are part of an
abstract data type and backward proving is supported by tactics and tacticals.
The aim of the designers of Isabelle was to develop a generic proof checker,
supporting a variety of logics, with a high level of automation. Isabelle has been
called the next 700 provers [Pau90]. Isabelle is written in ML, and the source
code is freely available.

Isabelle is used in a broad range of applications: formalising mathematics
(including semantics), logical investigations, program development, specification
languages, and verification of programs or systems. References to applications
of Isabelle can be found in [Pfe].

2 A com parison of PV S and Isabelle/H O L

This section first describes several im portant aspects of a proof tool in general.
The comparison of PVS and Isabelle will then be structured along these lines.
The division is somewhat artificial, because strong dependencies exist between
the various parts, but is helpful in the comparison. The emphasis will be on
aspects th a t are im portant from a users’ perspective

The first aspect th a t we distinguish is the logic th a t is used by the tool. In
this paper we will restrict ourselves to (extensions of) typed higher-order logic.

Strongly related with the logic is the specification language. It is very
im portant to have a good specification language, because a significant part of a
verification effort comes down to specifying what one actually wishes to verify.
It is not very useful to have a fully verified statem ent, if it is not clear what the
statem ent means.

The next aspect th a t we distinguish is the prover. An im portant issue for the
prover is which proof commands (tactics) are available (i.e. which steps can be
taken in a proof). Strongly related with this is the choice of a tactica l language.
Tacticals or proof strategies are functions which build new proof commands, us
ing more basic ones. A sophisticated tactical language significantly improves the
power of a prover. Another im portant aspect is whether decision procedures
(such as for linear arithmetic and for abstract data types) are available.

A next aspect is the structure of the tool, i.e. whether there is a small kernel
which does all logical inferences. When the code of the kernel is available (and
small) it is possible to convince oneself of the soundness of the tool.

3

Another component is the p roof m anager, which determines e.g. how the
current subgoals are displayed, whether the proof trace is recorded and how
proof commands can be undone.

Theoretically non-existent, but very im portant for the actual use of a tool,
is the user interface. Of course this does not influence the “computing power”
of the tool, but a good user interface can significantly increase the effectiveness
and usability of a proof tool.

2.1 T he logic

P V S PVS implements classical typed higher-order logic, extended with pred
icate subtypes and dependent types. PVS has many built-in types, such as
booleans, lists, reals and integers; standard operations on these types are also
hard-coded in the tool. Type constructors are available to build complex types
e.g. function types, product types, records (labelled products) and recursively-
defined abstract data types. The use of predicate subtypes and dependent types
will be explained in more detail below.

Isabelle Isabelle has a meta-logic, which is a fragment of higher-order logic.
Formulae in the meta-logic are build using implication =>, universal quantifica
tion / \ and equality = . All other logics (the object logics) are represented in this
meta-logic. Examples of object logics are first-order logic, the Barendregt cube,
Zermelo-Fraenkel set theory and (typed) higher-order logic.

In this paper we will restrict attention to typed higher-order logic (HOL) as
object logic. The formalisation of HOL in Isabelle relies heavily on the meta-logic.
HOL uses the polymorphic type system of the meta-logic. In its turn , the type
system of the meta-logic is similar to the type system of ML, the implementation
language. Implication, quantification and equality are immediately defined in
terms of the meta-logic. Together with some appropriate axioms, these form the
basis for the higher-order logic theory. All other definitions, theorems and axioms
are formulated in terms of these basic constructs.

P red icate su btypes and dep en dent typ es Predicate subtypes and depen
dent types as in PVS are not common in mechanical proof checkers, but they
can be very useful in writing down a succinct and correct specification.

A predicate subtype is a new type constructed from an existing type, by
collecting all the elements in the existing type th a t satisfy the predicate. Perhaps,
the most famous basic example of a predicate subtype is the type of non-zero-
numbers. This type is used in the declaration of the division operator in PVS.
The code below1 is a fragment of the PVS prelude (which contains the theories
th a t are built-in to the PVS system).

nonzero_real: NONEMPTY_TYPE = {r: real I r /= 0} */, /= is inequality

+, * : [real, real -> real]
/ : [real, nonzero_real -> real]

1 All examples in this paper are available at
http://www.cs.kun.nl/ marieke/Comparison.html.

4

http://www.cs.kun.nl/

Ex_Array[T:TYPE]: THEORY
BEGIN

Ex_Array: TYPE = [# length : nat,
val : [below(length) -> T]

#]
END Ex_Array

Fig. 1. Dependent typing in PVS

When the division operator is used in a specification, type checking will require
tha t the denominator is nonzero. As this is not decidable in general, a so-called
Type Correctness Condition (TCC) is generated, which forces the user to prove
th a t the denominator is indeed nonzero. A theory is not completely verified
unless all of its type correctness conditions have been proven. In practice, most
of the TCCs can be proven automatically by the tool. The use of predicate
subtypes improves the readability of a specification and helps in detecting many
semantical errors, as the user can state explicitly all the type constraints. Carreno
and Miner come to the same conclusion in [CM95].
As mentioned, PVS offers another typing facility namely dependent typing. In
Figure 2.1 a theory of arrays is depicted. The type Ex_Array is a record with
two fields: len gth a natural number denoting the length of the array, and v a l a
function denoting the values at each position in the array. The domain of v a l is
the predicate subtype below (len gth) of the natural numbers less than length.
The type of v a l thus depends on the actual length of the array2.

2.2 T he specification language

P V S The specification language of PVS is rich, containing many different type
constructors, predicate subtypes and dependent types. As an example, a spec
ification of the quicksort algorithm can be found in Figure 2. We discuss some
specific points.

• PVS has a param etrised m odule system. A specification is usually divided
in several theories and each theory can be parametrised with both types and
values. Theories can import (multiple) other theories from every point in the
theory, so th a t a value or type th a t has just been declared or defined can
immediately be used as an actual parameter.
Polymorphism is not available in PVS, but it is approximated by theories
with type parameters. To define a polymorphic function, one can put it
in a theory which is parametrised with the type variables of the function.
However, this approach is not always convenient, because when a theory is
imported all parameters should have a value, thus when a function does not
use all type parameters of a theory, the unused types should still get some
instantiation.

2 Dependent typing and predicate subtyping in general are separate matters, but in
PVS dependent types can only be constructed using predicate subtypes.

5

sort[T:TYPE,<=: [T,T->bool]] : THEORY */, parametrised theory
BEGIN

ASSUMING */, assuming clause
total: ASSUMPTION total_order?(<=) */, infix operator

ENDASSUMING

1 : VAR list[T]
e : VAR T

sorted(l) : RECURSIVE bool = */, recursive definitions
IF null?(l) OR null?(cdr(1)) */, with measure
THEN true
ELSE car(1) <= car(cdr(l)) AND sorted(cdr(l))
ENDIF

MEASURE length(1)

qsort(l): RECURSIVE list[T] =
IF null?(1) THEN null
ELSE LET piv = car(l)

IN append(qsort(filter(cdr(l),(LAMBDA e: e <= piv))),
cons(piv,
qsort(filter(cdr(l),(LAMBDA e: NOT e <= piv)))))

ENDIF
MEASURE length(1)

qsort_sorted: LEMMA sorted(qsort(1))

END sort

Fig. 2. A specification of the quicksort algorithm in PVS

• PVS has a rich overloading structure. Different functions can have the
same name as long as they have different input types. Different functions in
different theories can have the same name, even when they have the same
(input) type. The theory name can be used as a prefix to distinguish between
them. Names for theorems and axioms can be reused as well, as long as they
are in different theories. Again, the theory name can be used to disambiguate
this.

• A theory can start with a so-called assum ing clause, where one states
assumptions, usually about the parameters of the theory. These assumptions
are used as a fact in the rest of the theory. When the theory is imported,
TCCs are generated, which force the user to prove th a t the assumptions hold
for the actual parameters.

• R ecursive data typ es and functions can be defined in PVS. An induc
tion principle and several standard functions, such as map and reduce, are
automatically generated from an abstract data type definition. PVS allows
general recursive function definitions. All functions in PVS have to be total,

6

QSort = HOL + List + WF_Rel + (* theory importings *)

consts (* infix operators *)
"«=" :: "[’a, ’a] => bool" (infixl 65)

axclass (* axiomatic type class *)
ordclass < term
total_ord "total (op <<=)"

consts (* primitive recursion *)
sorted:: "[(’a :: ordclass) list] => bool"

primrec sorted list
sorted_nil "sorted [] = True"
sorted_cons "sorted (x#xs) = ((case xs of [] => True I y#ys => x <<= y) &

sorted xs)"

consts (* well-founded recursion *)
qsort :: "[(’a :: ordclass) list] => (’a :: ordclass) list"

recdef
qsort "measure size"

"qsort [] = []"
"qsort (x # xs) = qsort [y : xs. y « = x] <5

(x # qsort [y : xs. y <<= x])"

end

Fig. 3. A specification of the quicksort algorithm in Isabelle

therefore term ination of the recursive function has to be shown, by giving a
measure function which maps the arguments of the function to a type with a
well-founded ordering. The tool generates TCCs th a t force the user to prove
th a t this measure decreases with every recursive call.

• PVS has much fixed syntax. Many language constructs, such as IF . . . and
CASES. . . are built-in to the language and the prover. There is a fixed list of
symbols which can be used as infix operators; most common infix operators,
such as + and <= are included in this list. Sometimes PVS uses syntax which
is not the most common, e.g. [A,B] for a Cartesian product of types A and
B and (: x , y , z :) for a list of values x,y,z.

Isabelle The specification language of Isabelle is inspired by functional pro
gramming languages (especially ML). In Figure 3 the quicksort example is shown
in Isabelle syntax. We discuss some specific aspects.

• The m od u le sy stem allows importing multiple other theories, but it does
not permit parametrisation. The type parameters of PVS are not necessary
in Isabelle, because functions can be declared polymorphically. The value
parameters of PVS can be thought of as an implicit argument for all functions
in the theory. Making this argument explicit could be the way to ’mimic’ the
value parameters in Isabelle.

7

• A xiom atic typ e classes [Wen95,Wen97] are comparable to the assuming
clause in PVS, and type classes in functional programming [WB89]. In a
type class polymorphic declarations for functions are given. Additionally, in
axiomatic type classes required properties about these functions can also be
stated. These properties can be used as axioms in the rest of the theory. The
user can make different instantiations of these axiomatic type classes, by
giving appropriate bodies for the functions and proving th a t the properties
hold. Notice th a t a limited form of overloading can be realised using Isabelle’s
axiomatic type classes, only for functions with a single polymorphic type.

• Isabelle automatically generates induction principles for each recursive
data type. The user can give inductive and coinductive function def
initions. There is a special construct to define primitive recursive functions.
Well-founded recursive functions can be defined as well, together with a
measure function to show their termination.

• Isabelle syntax can easily be extended. In particular, Isabelle allows the user
to define arbitrary infix and mixfix operators. There is a powerful facility to
give priorities and to describe a preferred syntax. This allows the user to
define th a t lists should be represented for input and output as e.g. [1,2,3]
while internally this is represented as (cons 1 (cons 2 (cons 3 n i l))) .
Language constructs like i f . . .th en . . .e l s e are defined explicitly in terms
of the basic operators.

2.3 T he pro ver

P V S PVS represents theorems using the sequent calculus. Every subgoal con
sists of a list of assumptions A±, . . . An and a list of conclusions B \ , . . . , B m. One
should read this as: the conjunction of the assumptions implies the disjunction
of the conclusions i.e. A± A . . . A A n =$■ B \ V . . . V B m.

The proof commands of PVS can be divided into three different categories3.

• C reative p roof com m ands. These are the proof steps one also writes
down explicitly when writing a proof by hand. Examples of such commands
are induct (start to prove by induction), in s t (instantiate a universally-
quantified assumption, or existentially quantified conclusion), lemma (use
a theorem, axiom or definition) and case (make a case distinction). For
most commands, there are variants which increase the degree of automation,
e.g. the command in s t? tries to find an appropriate instantiation itself.

• B ureaucratic p roof com m ands. When writing a proof by hand, these
steps usually are done implicitly. Examples are f la t t e n (disjunctive sim
plification) expand (expanding a definition), rep lace (replace a term by
an equivalent term) and hide (hide assumptions or conclusions which have
become irrelevant).

• Pow erful p roof com m ands. These are the commands th a t are intended to
handle all “trivial” goals. The basic commands in this category are s im p lify

3 This division is made by the authors, not by the developers of PVS. Nevertheless it
resembles the division made in [COR+95].

8

and prop (simplification and propositional reasoning). A more powerful ex
ample is a sser t. This uses the simplification command and the built-in
decision procedures and does autom atic (conditional) rewriting. PVS has
some powerful decision procedures, dealing, among other things, with linear
arithmetic. The most powerful command is grind, which unfolds definitions,
skolemizes quantifications, lifts if-then-elses and tries to instantiate and sim
plify the goal.

Isabelle The basic proof method of Isabelle is resolution. The operation ES is
the standard resolution operation. It unifies the conclusion of its first argument
with the first assumption of the second argument. As an example, when doing
resolution with ([?P] 4 ? P V IQ) and ([?-R; ?£>] =4- 1R A IS), this results in the
theorem [?P; ?S] (?P V IQ) A IS.

Isabelle supports both forward and backward proving, although its empha
sise lies on backward proving by supplying many useful tactics for it. A tactic
transforms the proof goal into several subgoals and gives a justification for this
transformation.

In Isabelle, every goal consists of a list of assumptions and one conclusion.
The goal \A \ \ A 2 ; . . . ; -4„] => B should be read as Ai =£- (A? =4- . . . (An =4- B)).
Notice th a t =£- is the implication of the meta-logic.

Isabelle tactics usually do not return a single next state, but a lazy list with
possible next states. Many tactics try to find a useful instantiation themselves
and return a lazy list containing (almost) all possible instantiations (in a suitable
order). When the first instantiation is not satisfactory the next instantiation can
be tried with back. This possibility is mainly used by powerful tactics.

The proof commands of Isabelle can be divided in several categories as well,
although these are different from the categories used earlier for PVS.

• R eso lu tion is the basis for many tactics. The standard one is resolve_tac.
It tries to unify the conclusion of a theorem with the conclusion of a subgoal.
If this succeeds, it creates new subgoals to prove the assumptions of the
theorem (after substitution).

• Another basic tactic is assume.tac, which tries to unify the conclusion with
one of the assumptions.

• Induction is done by ind u ct.tac , which does resolution with an appropri
ate induction rule.

• U se an axiom or th eorem by adding it to the assumption list. There
are several variants: with and without instantiation, in combination with
resolution etc.

• S im plification tactics for (conditional) rewriting. For every logic a so-called
simplification set can be build. This set contains theorems, axioms and def
inition, th a t can be used to rewrite a goal. It is possible to extend the sim
plification set (temporarily or permanent).
Isabelle’s simplifier uses a special strategy to handle permutative rewrite
rules, i.e rules where the left and right hand side are the same, up to re
naming of variables. A standard lexical order on term s is defined and a

9

permutative rewrite rule only is applied if this decreases the term , according
to this order. The most common example of a permutative rewrite rule is
commutativity (x © y = y © x). W ith normal rewriting (as is done by PVS)
this rule will loop, but ordered rewriting avoids this.

• C lassical reasoning is another powerful proof facility of Isabelle. There
are various tactics for classical reasoning. One of them, b last_ tac, uses a
tableau prover, coded directly in ML. The proof tha t is generated is then
reconstructed in Isabelle.

• B ureaucratic tactics are also available, such as r o ta te .ta c , which changes
the order of the assumptions. This can be necessary for rewriting with the
assumptions, because this is done from top to bottom.

A theorem can contain so-called meta-variables, which can be bound while prov
ing it. As an example, consider the specification of quicksort (Figure 3). Suppose
th a t we instantiated the axiomatic type class with the natural numbers (defining
« = as <) and th a t the definition of quicksort is automatically rewritten. Now
we can state for example the following goal

goal QSort.thy "qsort[4, 2, 3] = ?x";

where ?x is a meta-variable. When simplifying this goal, the meta-variable
is bound to [2 ,3 ,4] (and the theorem is proven). The theorem is stored as
qsort [4 , 2 , 3] = [2 , 3 , 4] This feature makes Isabelle well-suited for trans
formational programming [AB96] and writing a Prolog interpreter [Pau94].

T actical language A tactical (or proof strategy) is a function to build complex
tactics (or proof commands) using more basic ones. A well-known example is
the tactical then. This tactical gets two tactics as arguments and applies them
sequentially to the goal.

PVS has a very limited proof strategy language; roughly it is only possible
to concatenate and repeat proof commands in several ways. When one wishes to
go beyond this, for example to inspect the goal, this should be done in Lisp. The
Lisp data structure th a t contains the proof goal is not officially documented;
some accessor functions are known to work but the developers explicitly allow
themselves to change PVS at this level of implementation. Probably it is possible
to change the goal in Lisp without a logical justification.

In Isabelle the tactical language is ML, so a complete functional language
is available. All logical inferences on terms of type thm (the theorems) are per
formed by a limited set of functions. In ML a type can be ’closed’, which means
th a t a programmer can express th a t no other functions than a number of ’trusted’
functions are allowed to manipulate values of this type (in this case: theorems).
In this way the full power of ML can be used to program proof strategies, and
soundness is guaranteed via the interface.

P roving w ith pow erful p roof com m ands Both PVS and Isabelle can do
simple calculations quite fast. For instance the theorem below is proven in (al
most) zero time in PVS by (ASSERT), using the built-in integer arithmetic.

10

calc: LEMMA 700 * 400 * 11 = 2 * 7 * 22 * 10000

In Isabelle/HOL we have a similar result. After loading the theories defining the
integers we can prove the following goal in (almost) zero time using simplifica
tion. Note th a t integers have a sharp-sign # as prefix. Operations on integers are
defined using their binary representation, so in contrast to PVS, arithmetic is
not part of the kernel, but defined in the logic.

goal Bin.thy "#700 * #400 * #11 = #2 * #7 * #22 * #10000";

Linear (and some non-linear) arithmetic has standard support in PVS and the
next theorem is also proven with a single command.

arith: LEMMA 7 + x < 8 + x AND 2 * x * x < = 3 * x * x

In Isabelle a package to cancel out common summands (and factors) is available.
It is loaded standardly for the naturals, but not for the integers. The following
goal is proven in one step, using simplification.

goal Arith.thy " l + x < 2 + x " ;

A well-known [COR+95] example of the simplification procedures of PVS is the
proof of the characterisation of the summation function. The theorem below is
proven by a single command (in d u c t-a n d -s im p lify "k")

sum(k:nat): RECURSIVE nat =
IF k = 0 THEN 0 ELSE k + sum(k-l) ENDIF

MEASURE k

sum_char: LEMMA sum(k) = k*(k+l)/2

An impressive example of the classical reasoner of Isabelle is the following the
orem, problem 41 of Pelletier. PVS can not prove this in one command, while
Isabelle can, using the classical reasoner (B last_ tac).

(ALL z. EX y. ALL x. J x y = (J x z & (~ J x x))) — > ~(EX z. ALL x. J x z)

2.4 S ystem organisation and soundness

P V S The developers of PVS designed their prover to be useful for real world
problems. Therefore the specification language should be rich and the prover
fast with a high degree of automation. To achieve this, powerful decision proce
dures were added to PVS. However, these decision procedures sometimes cause
soundness problems, thus the procedures are part of the kernel, which makes the
kernel large and complex. Further, PVS once was considered to be a prototype
for a new SRI prover. Perhaps for these reasons PVS still seems to contain a lot
of bugs and frequently new bugs shows up. An overview of the known bugs at the
moment can be seen on h t tp : / /w w w .c s l .s r i .c o m /h tb in /p v s /p v s -b u g - l i s t .
It would be desirable th a t the bugs in PVS would only influence completeness
and not soundness. Unfortunately, this is not the case, as some recent proofs of

11

http://www.csl.sri.com/htbin/pvs/pvs-bug-list

true=false have shown [Owr]. Most bugs do not influence soundness, but they
can be very annoying.

Because of the soundness bugs in the past, it is reasonable to assume tha t
PVS will continue to contain soundness bugs. The obvious question thus arises,
why use a proof tool th a t probably contains soundness bugs? Our answer is
threefold:

PVS is still a very critical reader of proofs. PVS lets fewer mistakes slip
through than many of our human colleagues (and PVS is much more patient),
thus in comparing PVS to an average logician/mathematician PVS is much more
precise and sceptic.

Furthermore, history tells us th a t the fixed soundness bugs are hardly ever
unintentionally explored, we know of only a single case.

Thirdly, most mistakes in a system th a t is to be verified are detected in
the process of making a formal specification. Thus economically spoken, the
specification is very im portant, and PVS has a expressive and human friendly
specification language. Therefore when we specify a system in the language of
PVS this gives extra confidence th a t the specification expresses what is ’m eant’.

A lot of effort has been put into the development of PVS. For this reason
SRI does not make the code of PVS freely available. As a consequence, to most
users the structure of the tool is unknown and making extensions or bug fixes is
impossible, although sometimes users go to SRI to implement a feature.

Isabelle Isabelle was developed from quite a different perspective. The main
objective was to develop a flexible and sound prover, and next to develop pow
erful tactics, so th a t large proof steps could be taken at once. Isabelle seems
to be much more stable than PVS. It does not show unpredictable behaviour.
Recently a new Isabelle version was released4. To our surprise some tactics (es
pecially Auto_tac) were changed, so th a t our old proofs really had to be adapted,
and not all of these changes were clearly documented.

2.5 T he p roof m anager

P V S All proofs in PVS are done in a special proof mode. The tool manages
which subgoals still have to be proven and which steps are taken to construct a
proof, so it is not the users responsibility to maintain the proof trace. Proofs are
represented as trees. There is an T cl/T k interface which gives a picture of the
proof tree (see Figure 4). It helps the user to see which branches of the proof
are not proven yet. One can click on a turnstile to see a particular subgoal, also
the proof commands can be displayed in full detail.

When using a proof tool most of the time the theorems and specification
are under construction, as the processes of specifying and proving are usually
intermingled. The notion of “unproved theorem” allows to concentrate on the
crucial theorems first and prove the auxiliary theorems later. PVS keeps track
of the status of proofs, e.g. whether it uses unproved theorems.

4 Isabelle98

12

Fig. 4. Example of a Tcl/Tk proof tree

Lino num bers can be used in PVS to spocifiy th a t a com m and should work
only on some of the assum ptions/conclusions, e.g. (expand " f " 2) expands f
in the second conclusion. W hen a specification or theorem is slightly changed
(e.g. an conjuct is added), the line num bers in the goal often change. It would
be more robust, if one could use com m ands expressing things like: expand all
f s w ith zero as first argum ent, and only expand f in the assum ptions where
function g occurs. This has an additional advantage, namely th a t intention of
the proof step becomes clearer. The au thors have m ade their own Lisp functions
to calculate a list of line num bers th a t satisfy a simple regular expression. This
is already helpful (ospcially in strategies), bu t m any extensions are possible. For
example, in the presence of overloading it would be useful to expand fs of a
specific type.

I s a b e lle Isabelle does not give elaborate proof support. The user has to keep
track of everything h im /herself (including the undos). The proofs are structured
linearly, there is ju st a list of all subgoals. This stim ulates the use of tacticals
such as ALLGOALS, bu t it is not so easy to see how “deep” or in which branch
one is in a proof. On the o ther hand, in Isabelle it is possible to undo an undo
(or actually: a choplov. which steps back an a rb itra ry num ber of levels, or to a
particu lar level). And even more, it is also possible to look a t the subgoals a t an
earlier level, w ithout undoing the proof.

2 .6 U s e r in te r fa c e

P V S’s standard user interface is b e tte r developed th an Isabelle’s. It is is strongly
in tegrated w ith Ernacs. Recently, a batch m ode was added to PVS. The de facto
interface for Isabelle is Isamodo (also based on Ernacs). There are some more
advanced user interfaces based on T c l/T k . bu t they only work for particu lar
versions of Isabelle.

13

2.7 M anuals and support

PVS has a number of different manuals, but none of these is completely up-to-
date. There is an introductionary manual with a fully elaborated (non-trivial)
example to get started. On the mailing list one can ask starters questions.

Isabelle also comes equipped with several manuals. These are more up-to-date
and concise, but often they explain things very briefly (and sometimes cryptic).
The introductionary manual does not really give an interesting example, and it
is hard to start using Isabelle, only on the basis of the manuals. The best way
to start is to take the (annual) Isabelle course. There is good (personal) support
from the developers. They usually reply very quickly (same day) on emails with
questions and problems. We found th a t this was really helpful.

2.8 R u n tim e speed

We did not compare the speed of the tools because we think the game is not
to “run” a proof, but to construct it. This construction consists of building a
specification of a problem and proving appropriate theorems. This is hard and
depends heavily on the user, his/her experience with the proof tool etc. We do
mention though th a t the “experienced speed” of the two tools is comparable.
By this we mean the time it takes to type check a specification or to execute a
sm art tactic.

3 Our experiences

In this section we wish to discuss in some detail our own, more personal, experi
ences. After using PVS for several years we became increasingly unhappy with
it, because so many bugs appeared. Sometimes it felt th a t we would spend more
time on working around small bugs, than on proving serious properties. In this
period the first author visited Munich and became enthusiastic about Isabelle.
However, reading the Isabelle manuals did not provide enough background to get
really started with it. Therefore, in September 1997 the second author visited
the Isabelle course in Cambridge. After this course, it seemed relatively easy to
start working seriously with Isabelle.

To start with a well-understood, but non-trivial example, the Tree Identi
fication Phase (T/Pj[DGRV97] of the 1394 protocol was selected, as the first
author had already worked extensively on it using PVS. The first challenge was
to transform the PVS specification into Isabelle, because Isabelle’s specification
language lacks e.g. records and function updates.

The next step was to start proving. We are used to PVS’s proof manager,
which records all the steps we take in a proof. Isabelle only provides a so-called
listener, which records everything the user types in (including the typos and steps
th a t were undone later), so the proof has to be filtered out. We experienced tha t
it works faster to copy the steps immediately than to use the listener.

When we then really started proving, we noticed a big difference in the han
dling of conditional expressions (i.e. i f . . . t h e n . .. e ls e) . In PVS, conditionals

14

are built-in and the prover knows how to deal with them. In Isabelle conditional
expressions are explicitly defined and the prover does not have special facili
ties for them. We discussed this with Larry Paulson and Tobias Nipkow, which
resulted in a solution for Isabelle94-8. In Isabelle98 more tactics to deal with
conditional expressions are standard available.

After proving some invariants over the TIP protocol, we also studied whether
a translation of object-oriented specifications into higher-order logic (part of a
different project [HHJT98]) could be adapted to Isabelle. In the translation to
PVS we made extensive use of overloading and this caused serious difficulties.
In discussions with the Isabelle developers we tried several solutions, but none
of these were satisfactory. Isabelle98 has the possibility to define different name
spaces and this might help. Due to time constraints and lack of documentation
we did not investigate this option.

4 The best o f both worlds

When comparing PVS and Isabelle we realised th a t both tools had their advan
tages and disadvantages. Our ideal proof tool would combine the best of both
worlds.

T he logic Predicate subtyping and dependent typing give so much extra expres
siveness and protection against semantical errors, th a t this should be supported.
The loss of decidability of type checking is easily (and elegantly) overcome by
the generation of TCCs and the availability of a proof checker.

The meta-logic of Isabelle gives the flexibility to use different logics, even in a
single proof. However, in our applications, we did not feel the need to use a logic
other than HOL and the interference with the meta-logic sometimes complicated
matters.

T he specification language The specification language should be readable,
expressive and easily extendible. For function application, we have a slight pref
erence for the bracketless syntax of Isabelle.

It should be possible to parametrise theories with values. We have a prefer
ence for type parametrised theories, because polymorphism is hard to combine
with overloading. A disadvantage of type inference, in combination with im
plicitly (universally) quantified variables, is th a t typos introduce new variables,
and do not produce an error. As an example, suppose th a t one has declared a
function myFunction : : nat => nat, but th a t by accident the following goal
is typed in: "myFunction x < myFuntion (x+1) ". This is internally equivalent
to: "ALL myFuntion. myFunction x < myFuntion (x+1) ". This error can only
be detected by asking explicitly for the list of variables (and their types) in the
goal.

T he prover The ideal prover has powerful proof commands for classical reason
ing and rewriting, including ordered rewriting. A tactic should return a lazy list
of possible next states, as this is useful to try (almost) all possible instantiations.

15

Also, decision procedures (for example for linear arithmetic) should be available.
Preferably, these decision procedures are not built-in to the kernel, but written
in the tactical language, so th a t they can not cause soundness problems. The
style of the interactive proof commands of PVS is preferred over th a t of Isabelle,
because this is more intuitive. It is im portant to have a structured tactical lan
guage, which allows the user to access the goal. For this purpose, the structure
of the goal should be well-documented.

S ystem organisation To ensure soundness of the proof tool, the system should
have a small kernel. The code of the tool should be freely available, so th a t users
can easily extend it for their own purposes and (if necessary) implement bug
fixes.

T he p roof m anager and user interface The tool should keep track of the
proof trace. Proofs are best represented as trees, because this is more natural,
compared to a linear structure. The tree representation also allows easy naviga
tion through the proof, supported by a visual representation of the tree. When
replaying the proof, after changing the specification, the tool can detect for which
branches the proof fails, thanks to the tree representation.

5 Conclusions and future work

We tried to describe some im portant aspects of PVS and Isabelle which are not
in the ‘advertising of the tool’, but are im portant in making a decision on which
tool to use. To conclude, Figure 5 gives a list of criteria for judging a proof tool,
filled in for PVS and Isabelle. This list is not complete and based on the available
features of PVS and Isabelle and our work done with these proof tools. We hope
th a t in the future users of other proof tools will produce a similar consumers’
test on “their” proof tool too, so th a t a broad overview of users’ experiences
with different proof tools will be available.

Maybe such comparisons will lead to a proof tool which combines the best
of all available proof tools. Looking only at PVS and Isabelle, it would be de
sirable to have a proof tool with the specification language, proof manager and
user interface of PVS, but the soundness, flexibility and well-structuredness of
Isabelle.

Acknowledgem ents

We thank B art Jacobs and Frits Vaandrager for their comments on earlier drafts
of this paper.

References

[AB96] Abdelwaheb Ayari and David A. Basin. Generic system support for de
ductive program development. In T. Margaria and B. Steffen, editors, Pro
ceedings of the Workshop on Tools and Algorithms for the Construction and

16

PVS 2.417 Isabelle98/HOL
logic typed HOL typed HOL
dependent types ++ not available
predicate subtypes ++ not available
standard syntax ++/+ +
flexible syntax - ++
module system ++/+ +
polymorphism - ++
overloading ++ -

abstract data types ++/+ ++/+
recursive functions ++/+ ++/+
proof command language + +/-
tactical language - ++
automation + +
arithmetic decision procedures ++ +/-
libraries + ++/+
proof manager ++ +/-
interface ++ +
soundness - ++
upwards compatible +/- +/-
easy to start using + -
manuals +/- +/-
support + ++
time it takes to fix a bug - ?
ease of installation ++ ++

Fig. 5. A consumer report of PVS and Isabelle

Analysis of Systems, Passau, Germany, volume 1055 of LNCS. Springer
Verlag, April 1996.
Sten Agerholm and Mike Gordon. Experiments with ZF set theory in HOL
and Isabelle. In E. Thomas Schubert, Philip J. Windley, and James Alves-
Foss, editors, Proceedings of the 8th International Workshop on Higher Or
der Logic Theorem Proving and Its Applications, Aspen Grove, UT, USA,
volume 971 of LNCS. Springer-Verlag, September 1995.
Judith Crow and Ben L. Di Vito. Formalizing Space Shuttle software re
quirements. In First Workshop on Formal Methods in Software Practice
(FMSP ’96), pages 40-48, San Diego, CA, January 1996. Association for
Computing Machinery.
Victor A. Carreno and Paul S. Miner. Specification of the IEEE-854 floating
point standard in HOL and PVS. In HOL95: Eighth International Work
shop on Higher-Order Logic Theorem Proving and Its Applications, As
pen Grove, UT, September 1995. Category B proceedings, available at
http://lal.cs.byu.edu/lal/hol95/Bprocs/indexB.html.

[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Man-
dayam Srivas. A tutorial introduction to PVS. Presented at W IFT
’95: Workshop on Industrial-Strength Formal Specification Techniques,
Boca Raton, Florida, April 1995. Available, with specification files, at
h t t p ://www.csl.sri.com/wift-tutorial.html.

[AG95]

[CD96]

[CM95]

17

http://lal.cs.byu.edu/lal/hol95/Bprocs/indexB.html
http://www.csl.sri.com/wift-tutorial.html

[Dat]

[DGRV97]

[GF97]

[GMW79]

[Gor95]

[HHJT98]

[MH96]

[Owr]

[Pau90]

[Pau94]

[Pfe]

[Rus]
[Sha96]

[WB89]

[Wen95]

[Wen97]

[You97]

[Zam97]

Database of existing mechanized reasoning systems,
http://w w w -form al.s ta n fo rd .e d u /clt/A R S/system s.htm l.
Marco Devillers, David Griffioen, Judi Romijn, and Frits Vaandrager. Ver

ification of a leader election protocol formal methods applied to IEEE 1394.
Technical Report CSI-R9728, Computing Science Institute, Catholic Uni
versity of Nijmegen, 1997.
Elsa L. Gunter and Amy Felty, editors. Proceedings of the 10th, International
Workshop on Theorem Proving in Higher Order Logics, Murray Hill, NJ,
USA, volume 1275 of LNCS. Springer-Verlag, August 1997.
Michael J.C. Gordon, Robin Milner, and Cristopher P. Wadsworth. Ed
inburgh, LCF: A Mechanised Logic of Computation,, volume 78 of LNCS.
Springer-Verlag, 1979.
Mike Gordon. Notes on PVS from a HOL perspective. Available at
http ://w w w .cl.cam .ac.uk/users/m jcg/PV S.htm l, August 1995.
Ulrich Hensel, Marieke Huisman, Bart Jacobs, and Hendrik Tews. Reason
ing about classes in object-oriented languages: Logical models and tools.
In Proceedings of ESOP at ETAPS ’98, LNCS. Springer-Verlag, 1998. To
appear.
Nicholas A. Merriam and Michael D. Harrison. Evaluating the interfaces of
three theorem proving assistants. In F. Bodart and J. Vanderdonckt, edi
tors, Proceedings of the 3rd International Eurographics Workshop on Design,
Specification, and Verification, of Interactive Systems, Eurographics Series,
Namur, Belgium, June 1996. Springer-Verlag.
Sam Owre. h ttp ://w w w .c s l.s r i.c o m /h tb in /p v s /p v s-b u g -lis t
Bug numbers: 71, 82, 113 and 160.
Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-386. Academic
Press, 1990.
Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer-Verlag, 1994.
Frank Pfenning. Isabelle bibliography.
h t t p : //www.cl. cam .ac.uk/R esearch/H V G /Isabelle/b iblio .h tm l.
John Rushby. PVS bibliography, h ttp ://w w w .csl.sri.co m /p v s-b ib .h tm l.
N. Shankar. PVS: Combining specification, proof checking, and model check
ing. In Mandayam Srivas and Albert Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD ’96), volume 1166 of LNCS, pages 257
264, Palo Alto, CA, November 1996. Springer-Verlag.
Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In 16’th, ACM Symposium on Principles of Programming Languages,
Austin, Texas, January 1989.
Markus Wenzel. Using axiomatic type classes in Isabelle, a tutorial, 1995.
h t t p : / / www4.inform atik.tu-m uenchen.de/~w enzelm /papers.htm l.
Markus Wenzel. Type classes and overloading in higher-order logic. In
Gunter and Felty [GF97].
William D. Young. Comparing verification systems: Interactive Consistency
in ACL2. IEEE Transactions on Software Engineering, 23(4):214-223, April
1997.
Vincent Zammit. A comparative study of Coq and HOL. In Gunter and
Felty [GF97].

18

http://www-formal.stanford.edu/clt/ARS/systems.html
http://www.cl.cam.ac.uk/users/mjcg/PVS.html
http://www.csl.sri.com/htbin/pvs/pvs-bug-list
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/biblio.html
http://www.csl.sri.com/pvs-bib.html
http://www4.informatik.tu-muenchen.de/~wenzelm/papers.html

