1,229 research outputs found

    Adult Day Services in Maine: Benefits, Challenges, and Opportunities

    Get PDF
    In Maine and nationally, adult day services tend to be underfunded and underutilized compared to other types of long term services and supports (LTSS). In part, investment in adult day services is hampered by a lack of standardized data collection and limited research on issues of accessibility, cost-effectiveness, and the impact of adult day services on the broader health system. Lack of uniformity in state regulatory frameworks for licensing, program design, service delivery, and other administrative requirements further complicates cross-state comparisons. Considering these limitations, a key goal of this report is to provide a more detailed and comprehensive understanding of the current capacity and role of adult day services providers in Maine, the regulatory environment in which they operate, barriers and challenges to access and operations, and potential opportunities for expanding access. For more information, please contact Elizabeth Gattine, [email protected]

    Estimating the causal effects of modifiable, non-genetic factors on Huntington disease progression using propensity score weighting

    Get PDF
    INTRODUCTION: Despite being genetically inherited, it is unclear how non-genetic factors (e.g., substance use, employment) might contribute to the progression and severity of Huntington's disease (HD). METHODS: We used propensity score (PS) weighting in a large (n = 2914) longitudinal dataset (Enroll-HD) to examine the impact of education, employment status, and use of tobacco, alcohol, and recreational and therapeutic drugs on HD progression. Each factor was investigated in isolation while controlling for 19 other factors to ensure that groups were balanced at baseline on potential confounders using PS weights. Outcomes were compared several years later using doubly robust models. RESULTS: Our results highlighted cases where modifiable (non-genetic) factors - namely light and moderate alcohol use and employment - would have been associated with HD progression in models that did not use PS weights to control for baseline imbalances. These associations did not hold once we applied PS weights to balance baseline groups. We also found potential evidence of a protective effect of substance use (primarily marijuana use), and that those who needed antidepressant treatment were likely to progress faster than non-users. CONCLUSIONS: Our study is the first to examine the effect of non-genetic factors on HD using a novel application of PS weighting. We show that previously-reported associated factors - including light and moderate alcohol use - are reduced and no longer significantly linked to HD progression after PS weighting. This indicates the potential value of PS weighting in examining non-genetic factors contributing to HD as well as in addressing the known biases that occur with observational data

    2012 Maine Child Support Guidelines: Review and Recommendations

    Get PDF
    This report summarizes the quadrennial review of Maine\u27s child support guidelines conducted by the USM Muskie School , which complies with federal law requiring each state\u27s child support guidelines be reviewed at least once every four years. Principle findings of the extensive review by the Muskie School show that many aspects of Maine\u27s child support system work well. Maine\u27s low deviation rate reflects a reasonably high level of consistency in apply the guidelines, and in large part, protect the needs and interests of the children. The report provides background and overview of child support modes and the Maine guidelines, and describes the elements of the review: Literature Review, Policy Analysis, Economic Analysis, Deviation Study, Stakeholder Input, Interviews with other State Child Support Officials, and concludes with several findings and recommendations. For additional information about the report or the study, contact Janice Daley at the Muskie School

    Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease

    Get PDF
    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress

    A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up

    Get PDF
    Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods. Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed. Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection

    Effectiveness of Biosecurity Measures in Preventing Badger Visits to Farm Buildings

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.BACKGROUND: Bovine tuberculosis caused by Mycobacterium bovis is a serious and economically important disease of cattle. Badgers have been implicated in the transmission and maintenance of the disease in the UK since the 1970s. Recent studies have provided substantial evidence of widespread and frequent visits by badgers to farm buildings during which there is the potential for close direct contact with cattle and contamination of cattle feed. METHODOLOGY: Here we evaluated the effectiveness of simple exclusion measures in improving farm biosecurity and preventing badger visits to farm buildings. In the first phase of the study, 32 farms were surveyed using motion-triggered infrared cameras on potential entrances to farm buildings to determine the background level of badger visits experienced by each farm. In the second phase, they were divided into four treatment groups; "Control", "Feed Storage", "Cattle Housing" and "Both", whereby no exclusion measures were installed, exclusion measures were installed on feed storage areas only, cattle housing only or both feed storage and cattle housing, respectively. Badger exclusion measures included sheet metal gates, adjustable metal panels for gates, sheet metal fencing, feed bins and electric fencing. Cameras were deployed for at least 365 nights in each phase on each farm. RESULTS: Badger visits to farm buildings occurred on 19 of the 32 farms in phase one. In phase two, the simple exclusion measures were 100% effective in preventing badger entry into farm buildings, as long as they were appropriately deployed. Furthermore, the installation of exclusion measures also reduced the level of badger visits to the rest of the farmyard. The findings of the present study clearly demonstrate how relatively simple practical measures can substantially reduce the likelihood of badger visits to buildings and reduce some of the potential for contact and disease transmission between badgers and cattle.This work was funded by Defra project number SE3119, http://www.defra.gov.uk/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The use of HaloTag-based technology in flow and laser scanning cytometry analysis of live and fixed cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining the technologies of protein tag labeling and optical microscopy allows sensitive analysis of protein function in cells.</p> <p>Findings</p> <p>Here, we describe development of applications using protein tag technology (HaloTag (HT)-based) for flow and laser scanning cytometry (LSC). Cell lines, expressing recombinant surface β1-integrin-HT and HT-p65 fusion protein, and a CD4 T cell line (Jurkat) infected with human immunodeficiency virus type 1 (HIV-1) reporter virus expressing the unfused HT (HIV-1<sub>Lai-Halo</sub>), were stained with different HT ligands and successfully detected by flow cytometers equipped with 488 and 561 nm lasers as well as a laser scanning cytometer (equipped with 488 and 405 nm lasers) alone or combined with cell cycle and viability markers.</p> <p>Conclusions</p> <p>Use of HT technology for cytometric applications has advantages over its use in microscopy as it allows for the statistical measurement of protein expression levels in individual cells within a heterogeneous cell population in combination with cell cycle analysis. Another advantage is the ability of the HaloTag to withstand long fixation and high concentration of fixative, which can be useful in research of infectious agents like HIV and/or mycobacteria.</p

    1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice

    Get PDF
    BACKGROUND: Human medulloblastomas exhibit diverse molecular pathology. Aberrant hedgehog signalling is found in 20-30% of human medulloblastomas with largely unknown metabolic consequences. METHODS: Transgenic mice over-expressing smoothened (SMO) receptor in granule cell precursors with high incidence of exophytic medulloblastomas were sequentially followed up by magnetic resonance imaging (MRI) and characterised for metabolite phenotypes by ¹H MR spectroscopy (MRS) in vivo and ex vivo using high-resolution magic angle spinning (HR-MAS) ¹H MRS. RESULTS: Medulloblastomas in the SMO mice presented as T₂ hyperintense tumours in MRI. These tumours showed low concentrations of N-acetyl aspartate and high concentrations of choline-containing metabolites (CCMs), glycine, and taurine relative to the cerebellar parenchyma in the wild-type (WT) C57BL/6 mice. In contrast, ¹H MRS metabolite concentrations in normal appearing cerebellum of the SMO mice were not different from those in the WT mice. Macromolecule and lipid ¹H MRS signals in SMO medulloblastomas were not different from those detected in the cerebellum of WT mice. The HR-MAS analysis of SMO medulloblastomas confirmed the in vivo ¹H MRS metabolite profiles, and additionally revealed that phosphocholine was strongly elevated in medulloblastomas accounting for the high in vivo CCM. CONCLUSIONS: These metabolite profiles closely mirror those reported from human medulloblastomas confirming that SMO mice provide a realistic model for investigating metabolic aspects of this disease. Taurine, glycine, and CCM are potential metabolite biomarkers for the SMO medulloblastomas. The MRS data from the medulloblastomas with defined molecular pathology is discussed in the light of metabolite profiles reported from human tumours

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin
    corecore