408 research outputs found

    Electron recombination with multicharged ions via chaotic many-electron states

    Get PDF
    We show that a dense spectrum of chaotic multiply-excited eigenstates can play a major role in collision processes involving many-electron multicharged ions. A statistical theory based on chaotic properties of the eigenstates enables one to obtain relevant energy-averaged cross sections in terms of sums over single-electron orbitals. Our calculation of the low-energy electron recombination of Au25+^{25+} shows that the resonant process is 200 times more intense than direct radiative recombination, which explains the recent experimental results of Hoffknecht {\em et al.} [J. Phys. B {\bf 31}, 2415 (1998)].Comment: 9 pages, including 1 figure, REVTe

    Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems

    Full text link
    We extend quantum kinetic theory to deal with a strongly Bose-condensed atomic vapor in a trap. The method assumes that the majority of the vapor is not condensed, and acts as a bath of heat and atoms for the condensate. The condensate is described by the particle number conserving Bogoliubov method developed by one of the authors. We derive equations which describe the fluctuations of particle number and phase, and the growth of the Bose-Einstein condensate. The equilibrium state of the condensate is a mixture of states with different numbers of particles and quasiparticles. It is not a quantum superposition of states with different numbers of particles---nevertheless, the stationary state exhibits the property of off-diagonal long range order, to the extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review

    Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary solvent blends

    Get PDF
    The development of processing routes to fabricate organic photovoltaic devices (OPVs) using non-halogenated solvents is a necessary step towards their eventual commercialisation. To address this issue, we have used Hansen solubility parameter analysis to identify a non-halogenated solvent blend based on a mixture of carbon disulphide and acetone. This solvent blend was then used to deposit a donor–acceptor polymer–fullerene thin-film that was then used as the active layer of bulk-heterojunction OPV. For the benchmark polymer:fullerene system PCDTBT:PC70BM, a power conversion efficiency of 6.75% was achieved; a 20% relative improvement over reference cells processed using the chlorinated-solvent chlorobenzene. Improvements in device efficiency are attributed to an increase in electron and hole conductivity resulting from enhanced fullerene crystallisation; a property that leads to enhanced device efficiency through improved charge extraction

    Gaussian quantum operator representation for bosons

    Get PDF
    We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic methods

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    An investigation of the dynamics of intramammary infections acquired during the dry period on European dairy farms

    Get PDF
    The dry period is acknowledged as playing a key role in mastitis epidemiology and yet surprisingly few studies have explored dry period infection dynamics in detail. The aim of this study was to investigate the dynamics of intramammary infection across a cohort of dairy herds in Europe. Five hundred and twenty-two cows were recruited from 12 farms in 6 European countries. All cows received antibiotic dry cow therapy but teat sealants were not used. All quarters of all cows were sampled for bacteriology at drying off and in the week immediately postcalving. Two ipsilateral quarters were also sampled for bacteriology in each cow 2 and 6 wk after drying off. Cows were body condition scored and teats assessed for cleanliness at all sampling time points and for the presence of a keratin plug during the dry period. Other cow-level parameters such as historic somatic cell counts and milk yields before drying off were collated from farm records. Univariable and multivariable analyses were undertaken to investigate the etiology, prevalence, and dynamics of infection during the dry period and associated influential factors. In summary, environmental mastitis pathogens predominated. Although gram-positive major pathogens were typically well controlled and did not increase in prevalence across the dry period, gram-negative pathogens generally increased in prevalence. There was an increase in the number of quarters that yielded no growth across the dry period, although this was driven by minor rather than major mastitis pathogen control. Other than the presence of a gram-positive or gram-negative pathogen 6 wk after drying off, the measured parameters were not influential when considering their effect on the presence of pathogens postcalving. Analysis also suggested that the early and mid dry period may be more important with respect to the timing of acquisition of infection than previously thought. We observed substantial variation in the etiology and prevalence of different pathogens on different farms with, in all cases, at least one of the 12 herds experiencing the opposite of the others with respect to increases and decreases in pathogen prevalence. Overall, this study confirms the importance of the dry period in mastitis epidemiology but highlights the importance of assessing and understanding infection dynamics on individual units. The lack of influence of the cow and quarter factors measured in this study suggests that herd and management factors may be more influential

    Development of a web-based, guided self-help, acceptance and commitment therapy-based intervention for weight loss maintenance: evidence-, theory-, and person-based approach.

    Get PDF
    Background: The long-term impact and cost-effectiveness of weight management programs depend on posttreatment weight maintenance. There is growing evidence that interventions based on third-wave cognitive behavioral therapy, particularly acceptance and commitment therapy (ACT), could improve long-term weight management; however, these interventions are typically delivered face-to-face by psychologists, which limits the scalability of these types of intervention. Objective: The aim of this study is to use an evidence-, theory-, and person-based approach to develop an ACT-based intervention for weight loss maintenance that uses digital technology and nonspecialist guidance to minimize the resources needed for delivery at scale. Methods: Intervention development was guided by the Medical Research Council framework for the development of complex interventions in health care, Intervention Mapping Protocol, and a person-based approach for enhancing the acceptability and feasibility of interventions. Work was conducted in two phases: phase 1 consisted of collating and analyzing existing and new primary evidence and phase 2 consisted of theoretical modeling and intervention development. Phase 1 included a synthesis of existing evidence on weight loss maintenance from previous research, a systematic review and network meta-analysis of third-wave cognitive behavioral therapy interventions for weight management, a qualitative interview study of experiences of weight loss maintenance, and the modeling of a justifiable cost for a weight loss maintenance program. Phase 2 included the iterative development of guiding principles, a logic model, and the intervention design and content. Target user and stakeholder panels were established to inform each phase of development, and user testing of successive iterations of the prototype intervention was conducted. Results: This process resulted in a guided self-help ACT-based intervention called SWiM (Supporting Weight Management). SWiM is a 4-month program consisting of weekly web-based sessions for 13 consecutive weeks followed by a 4-week break for participants to reflect and practice their new skills and a final session at week 18. Each session consists of psychoeducational content, reflective exercises, and behavioral experiments. SWiM includes specific sessions on key determinants of weight loss maintenance, including developing skills to manage high-risk situations for lapses, creating new helpful habits, breaking old unhelpful habits, and learning to manage interpersonal relationships and their impact on weight management. A trained, nonspecialist coach provides guidance for the participants through the program with 4 scheduled 30-minute telephone calls and 3 further optional calls. Conclusions: This comprehensive approach facilitated the development of an intervention that is based on scientific theory and evidence for supporting people with weight loss maintenance and is grounded in the experiences of the target users and the context in which it is intended to be delivered. The intervention will be refined based on the findings of a planned pilot randomized controlled trial

    Mechanical response functions of finite temperature Bose-Einstein Condensates

    Full text link
    Using the Liouville space framework developed in nonlinear optics we calculate the linear response functions and susceptibilities of Bose-Einstein condensates (BEC) subject to an arbitrary mechanical force. Distinct signatures of the dynamics of finite temperature BEC are obtained by solving the Hartree-Fock-Bogoliubov theory. Numerical simulations of the position dependent linear response functions of one dimensional trapped BEC in the time and the frequency domains are presented.Comment: 9 figures. Submitted to Phys. Rev.
    • …
    corecore