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Gaussian quantum operator representation for bosons

Joel F. Corney and Peter D. Drummond
ARC Centre for Quantum Atom Optics, University of Queensland, St. Lucia 4072, Queensland, Australia
~Received 1 July 2003; revised manuscript received 24 September 2003; published 24 December 2003!

We introduce a Gaussian quantum operator representation, using the most general possible multimode
Gaussian operator basis. The representation unifies and substantially extends existing phase-space representa-
tions of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It
enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum
uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results
in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic
methods.
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I. INTRODUCTION

In this paper we develop a general multimode Gauss
representation for a density matrix of bosons. As well
classical phase-space variables like (x,p), the representation
utilizes a dynamical space of quantum uncertainties or co
riances. The extended phase space accommodates mor
ciently the content of a quantum state and allows the phy
of many kinds of problems to be incorporated into the ba
itself. The Gaussian expansion technique unifies and gre
extends all the previous Gaussian-like phase-space repre
tations used for bosons, including the Wigner,Q, P, positive-
P, and squeezed-state expansions. The operator basis
includes non-Hermitian Gaussian operators, which are
density matrices themselves, but can form part of a prob
listic expansion of a physical density matrix. Unlike previo
approaches,any initial state is found to evolve with a dete
ministic time evolution underany quadratic Hamiltonian or
master equation.

The complexity of many-body quantum physics is ma
fest in the enormity of the Hilbert space of systems with ev
modest numbers of particles. This complexity makes it p
hibitively difficult to simulate quantum dynamics with o
thogonal states: no digital computer is large enough to s
the dynamically evolving state. However, quantum dyna
cal calculations are possible, with finite precision, throu
what are known as phase-space methods. These method
resent the evolving quantum state as probability distributi
on some suitable phase space, which can be sampled
stochastic techniques. The mapping to phase space ca
made to be exact. Thus the precision of the final resul
limited only by sampling error, which can usually be reliab
estimated and which can be reduced by an increased nu
of stochastic paths.

Arbitrary quantum mechanical evolution cannot be rep
sented probabilistically on a phase space as is usually
fined. Thus the extended phase space employed here
generalization of conventional phase space in several w
First, it is aquantumphase space, in which points can co
respond to states with intrinsic uncertainty. Heisenberg’s
certainty relations can thus be satisfied in this way or, m
generally, by considering genuine probability distributio
over phase space, to be sampled stochastically. Second
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phase space is ofdouble dimension, where classically rea
variables, such asx and p, now range over the comple
plane. This allows arbitrary quantumevolutionto be sampled
stochastically. Third, stochasticgauge functions are in-
cluded. These arbitrary quantities do not affect the phys
results, but they can be used to overcome problems in
stochastic sampling. Fourth, the phase space includes th
of second-order moments orcovariances. A phase space tha
is enlarged in this way is able to accommodate more inf
mation about a general quantum state in a single point
particular, any state~pure or mixed! with Gaussian statistics
can be represented as a single point in this phase space

The Gaussian representation provides a link betw
phase-space methods and approximate methods use
many-body theory, which frequently treat normal a
anomalous correlations or Green’s functions as dynam
objects@1#. As well as being applicable to quantum opti
and quantum information, a strong motivation for this rep
sentation is the striking experimental observation of BE
~Bose-Einstein condensation! in ultracold atomic systems
@2#. Already the term ‘‘atom laser’’ is widely used, and e
perimental observation of quantum statistics in these syst
is underway. Yet there is a problem in using previous qu
tum optics formalisms to calculate coherence properties
atom optics: interactions are generally much stronger w
atoms than they are with photons, relative to the damp
rate. The consequence of this is that one must anticip
larger departures from ‘‘semiclassical,’’ coherent-state
havior in atomic systems.

The present paper includes these nonclassical and i
herent effects at the level of the basis for the operator re
sentation itself. The purpose of employing a Gaussian b
set is not only to enlarge the parameter set~to hold more
information about the quantum state!, but also to include
basis states that are a close match to the actual states th
likely to occur in interesting systems, such as dilute gas
The payoff for increasing the parameter set is more effici
sampling of the dynamically evolving or equilibrium stat
of many-body systems.

The idea of coherent states as a quasiclassical basis
quantum mechanics originated with Schro¨dinger @3#. Subse-
quently, Wigner@4# introduced a distribution for quantum
density matrices. This method was a phase-space map
with classical dimensions and employed a symmetrically
©2003 The American Physical Society22-1
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dered operator correspondence principle. Later developm
included the antinormally orderedQ distribution @5#, a nor-
mally ordered expansion called the diagonalP distribution
@6#, methods that interpolate between these classical ph
space distributions@7,8#, and diagonal squeezed-state rep
sentations@9#. Each of these expansions either employs
explicit Gaussian density matrix basis or is related to o
that does by convolution. They are suitable for phase-sp
representations of quantum states because of the over
pleteness of the set of coherent states on which they
based.

Arbitrary pure states of bosons with a Gaussian wa
function or Wigner representation are often called
squeezed states@10#. These are a superset of the coher
states and were investigated by Bogoliubov@11# to approxi-
mately represent the ground state of an interacting Bo
Einstein condensate—as well as in much recent work
quantum optics@12#. Diagonal expansions analogous to t
diagonalP representation have been introduced using a b
of squeezed-state projectors, typically with a fixed squeez
parameter@9#. However, these have not generally resulted
useful dynamical applications, as they do not overcome
problems inherent in using a diagonal basis, as we disc
below.

In operator representations, one must utilize a comp
basis in the Hilbert space of density operators, rather tha
the Hilbert space of pure states. Thermal density matri
for example, are not pure states, but do have a GaussiP
representation and Wigner function. To include all thr
types of commonly used Gaussian states—the cohe
squeezed, and thermal states—one can define a Gau
state as a density matrix having a Gaussian positive-P or
Wigner representation@13#. This definition also includes dis
placed and squeezed thermal states. Gaussian states
been investigated extensively in quantum information a
quantum entanglement@14#. It has been shown that an initia
Gaussian state will remain Gaussian under linear evolu
@15#.

However, the Gaussian density matrices that corresp
to physical states donot by themselves form a complet
basis for the time evolution of all quantum density matric
This problem, inherent in all diagonal expansions, is rela
to known issues in constructing quantum-classical co
spondences@16# and is caused by the non-positive-defin
nature of the local propagator in a classical phase space.
manifest in the fact that there is generally no equival
Fokker-Planck equation~with a positive-definite diffusion
matrix! that generates the quantum time evolution a
hence, no corresponding stochastic differential equation
can be efficiently simulated numerically. This difficulty o
curs in nearly all cases except free fields and represen
substantial limitation in the use of these diagonal expans
methods for exact simulation of the quantum dynamics
interacting systems.

These problems can be solved by use of nonclass
phase spaces, which correspond to expansions in
Hermitian bases of operators~rather than just physical den
sity matrices!. One established example is the nondiago
positive-P @17# representation. The non-Hermitian basis
06382
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this case generates a representation with a positive prop
tor, which allows the use of stochastic methods to sample
quantum dynamics. By extending the expansion to includ
stochastic gauge freedom in these evolution equations,
can select the most compact possible time-evolution equa
@18–20#. With an appropriate gauge choice, this method
exact for a large class of nonlinear Hamiltonians, since
eliminates boundary terms that can otherwise arise@21#. The
general Gaussian representation used here also includes
features and extends them to allow treatment of any Ham
tonian or master equation with up to fourth-order polynom
terms.

Other methods of theoretical physics that have com
rable goals are the path-integral techniques of quantum fi
theory @22,23# and density functional methods@24#, which
are widely used to treat atomic and molecular systems.
first of these is exact in principle, but is almost exclusive
used in imaginary-time calculations of canonical ensemb
or ground states due to the notorious phase problem.
second method has similarities with our approach in tha
also utilizes a density as we do. However, density function
are normally combined with approximations like the loc
density approximation. Gaussian representation meth
have the advantage that they can treat both real-
imaginary-time evolution. In addition, the technique is exa
in principle, provided boundary terms vanish on partial in
gration.

In Sec. II, we define general Gaussian operators fo
density operator expansion and introduce a compact nota
for these operators, either in terms of mode operators
quantum fields. In Sec. III, we calculate the moments of
general Gaussian representation, relating them to phys
quantities as well as to the moments of previous represe
tions. Section IV gives the necessary identities that ena
first-principles quantum calculations with these represen
tions. Equation~4.15! summarizes the relevant operator ma
pings and constitutes a key result of the paper.

We give a number of examples in Sec. V of specific pu
and mixed states~and their non-Hermitian generalization!
that are included in the basis, and we give simplified versi
of important identities for these cases. Section VI descri
how the Gaussian representation can be used to deal
evolution in either real or imaginary time. In particular, w
show how it can be used to solve exactly any master eq
tion that is quadratic in annihilation and creation operato
Some useful normalization integrals and reordering identi
for the Gaussian operators are proved in the Appendixes

In a subsequent paper, we will apply these methods
systems with nonlinear evolution.

II. GAUSSIAN REPRESENTATION

The representations that give exact mappings between
erator equations and stochastic equations—an essential
toward representing operator dynamics in large Hilb
spaces—are stochastic gauge expansions@18–20# on a non-
classical phase space. Here, the generic expansion is wr
down in terms of a complete set of operators that are ty
cally non-Hermitian. This leads to the typical form
2-2
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GAUSSIAN QUANTUM OPERATOR REPRESENTATION . . . PHYSICAL REVIEW A68, 063822 ~2003!
r̂~ t !5E P~lW ,t !L̂~lW !dlW , ~2.1!

where P(lW ,t) is a probability distribution,L̂ is a suitable
basis for the class of density matrices being considered,
dlW is the integration measure for the corresponding gene
ized phase-space coordinatelW . See Fig. 1 for a conceptua
illustration of this expansion.

In phase-space methods, it is the distributionP that is
sampled stochastically. Therefore if the basis resembles
typical physical states of a system, the sampling error will
minimized, and if the state coincides exactly with an elem
of the basis, then the distribution will be ad function, with
consequently no sampling error. A Wigner orQ-function ba-
sis, for example, generates a broad distribution even
minimum uncertainty states. A general Gaussian basis, on
other hand, can generate ad-function distribution not only
for any minimum uncertainty state, but also for the grou
states of noninteracting finite-temperature systems.

A. Gaussian operator basis

In this paper, we define the operator basisL̂ to be the
most general Gaussian operator basis. The motivation
using the most general possible basis set is that when
basis set members nearly match the states of interest
resulting distributions are more compact and have low
sampling errors in a Monte Carlo or stochastic calculation
addition, a larger basis allows more choice of mappings
that lower-order differential correspondences can be utiliz
In some cases, a large basis set can increase computa
memory requirements, as more parameters are needed.
disadvantage is outweighed when there is a substantia
crease in the sampling error, due to the use of a more ph
cally appropriate basis. By choosing a general Gaussian
erator basis, rather than just a basis of Gaussian den
matrices, one has the additional advantage of a comp
representation for all non-Gaussian density matrices as w

If â is a column vector ofM bosonic annihilation opera
tors andâ† the corresponding row vector of creation ope
tors, their commutation relations are

@ âk ,â j
†#5dk j . ~2.2!

FIG. 1. The density-operator expansion in Eq.~2.1! can be in-
terpreted as a convolution of the probability distributionP with the
underlying distribution of the basis. The uncertainty or spread of
physical state, indicated by the variancesr , is shared between th
distribution variancesP and the basis variancesL .
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Coherent displacements are introduced as column vectoa
and row vectorsa1. We define a Gaussian operator as
exponential of an arbitrary quadratic form in annihilation a
creation operators~or, equivalently, a quadratic form in po
sition and momentum operators!.

The simplest way to achieve this is to introduce extend
2M -vectors ofc numbers and operators:a5„a,(a1)T

… and
â5„â,(â†)T

…, with adjoints defined asa15(a1,aT) and
â†5(â†,âT), together with a relative operator displaceme
of

dâ5â2a5S â1

A

âM

â1
†

A

âM
†

D 2S a1

A

aM

a1
1

A

aM
1

D . ~2.3!

These extended vectors are indexed where necessary
Greek indicesm51, . . . ,2M .

A general Gaussian operator is now an exponential o
general quadratic form in the 2M -vector mode operatordâ.
For algebraic reasons, it is useful to employ normal orderi
and to introduce a compact notation using a generalized
variances:

L̂~lW !5
V

Ausu
:exp@2dâ†s21dâ/2#:. ~2.4!

Here the normalization factor involvingAusu is intro-
duced to simplify identities that occur later and plays a ve
similar role to the exactly analogous normalization fac
that occurs in the classical Gaussian distribution of proba
ity theory. The 2M32M covariance matrix is convenientl
parametrized in terms ofM3M submatrices as

s5F I1n m

m1 I1nTG , ~2.5!

where n is a complexM3M matrix and m,m1 are two
independent symmetric complexM3M matrices.

With this choice, the covariance has a type of generali
Hermitian symmetry in whichsmn5sn1M ,m1M , provided
we interpret the matrix indices as cyclic in the sense than
;n12M . This can also be written ass5s1, with the defi-
nition that

Fa b

c dG
1

[Fd c

b aG
T

. ~2.6!

This definition implies that we intend the ‘‘1’’ superscript to
define an operation on the covariance matrix which
equivalent to Hermitian conjugation of the underlying ope
tors. If the Gaussian operator is in fact an Hermitian ope
tor, then so is the corresponding covariance matrix. In t
case, the ‘‘1’’ superscript is identical to ordinary Hermitian

e

2-3
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J. F. CORNEY AND P. D. DRUMMOND PHYSICAL REVIEW A68, 063822 ~2003!
conjugation. The generalized Hermitian symmetry of the
variance means that all elements of the number correlation
appear twice, as do all except the diagonal elements of
squeezing correlationsm,m1.

The use of normal ordering allows simple operator ide
tities to be obtained, but can easily be related to more c
monly used unordered parametrizations. The Gaussian
erators include as special cases the density matrices of m
useful and well-known physical states. For example, th
include the thermal states of a Bose-Einstein distribution,
coherent states, and the squeezed states. They also in
many more states than these, like the off-diagonal cohe
state projectors used in the positive-P expansion, which are
not density operators themselves, but can be used to ex
density operators. The details are given in Sec. V.

B. Extended phase space

The representation phase space is thus extended to

lW 5~V,a,a1,n,m,m1!. ~2.7!

The complex amplitudeV, which appears in the normaliza
tion, acts as a dynamical weight on different stochastic
jectories. It is useful in calculations in which the normaliz
tion of the density matrix is not intrinsically preserved, su
as canonical ensemble calculations, and also enables sto
tic gauges to be included.

The complex vectorsa and a1 give the generalized co
herent amplitudes for each mode:a defines the amplitudes o
annihilation operatorsâ, while its ‘‘conjugate’’ a1 defines
the amplitudes of the creation operatorsâ†. The matrix n
gives the number, or normal, correlations between each
of modes. The squeezing, or anomalous, correlations
tween each pair of modes are given bym andm1: the matrix
m defines the correlations of annihilation operators, while
‘‘conjugate’’ m1 defines the correlations of the creation o
erators. These physical interpretations of the phase-s
variables are supported by the results of Sec. III, where
rigorously establish the connection of the phase-space v
ables to physical quantities.

In general, apart from the complex amplitudeV, the total
number of complex parameters needed to specify the
malizedM-mode Gaussian operator is

p5M ~213M !. ~2.8!

Hence the phase-space variables can be written alW
5(l0 ,l1 , . . . ,lp), with the corresponding integration me
sure asdlW 5d2(p11)lW .

C. Gaussian field operators

The above results define a completely general Gaus
operator in terms of arbitrary bosonic annihilation and c
ation operators, without reference to the field involved. It
sometimes useful to compare this to a field-theoretic no
tion, in which we explicitly use a coordinate-space integ
to define the correlations. This provides a means to ext
06382
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operator representation theory for fields@25–28# to more
general basis sets. In a quantization volumeV, one can ex-
pand

Ĉj~x!5
1

AV
(

k
âk, je

ik•x,

Ĉj
†~x!5

1

AV
(

k
âk, j

† e2 ik•x, ~2.9!

where the field commutators are

@Ĉj~x!,Ĉj 8
†

~x8!#5d j j 8d~x2x8!. ~2.10!

With this notation, the quadratic term in the Gaussian
ponent becomes

dâ†s21dâ5E E dĈ†~x!s21~x,y!dĈ~y!d3xd3y,

~2.11!

where we have introduced the extended vectorĈ(x)
5„Ĉ,(Ĉ†)T

… and dĈ(x)5Ĉ(x)2C(x), which is the op-
erator fluctuation relative to the coherent displacement
classical mean field. If we index the extended vector asC js ,
wheres521(1) for thefirst and second parts, respective
this Fourier transform can be written compactly as

C js~x!5
1

AV
(

k
ak jse

2 isk•x. ~2.12!

The notations21(x,y) indicates a functional matrix invers
where

E s21~x,y!s~y,x8!d3y5Id~x2x8!, ~2.13!

and the relationship to the previous cross-variance matri
that

s js, j 8s8~x,y!5
1

V (
k

(
k8

sk js,k8 j 8s8e
2 i (sk•x2s8k8•x8).

~2.14!

In the standard terminology of many-body theory a
field theory@1#, these field variances are generalized equ
time Green’s functions and can be written as

s~x,x8!5F Id~x,x8!1n~x,x8! m~x,x8!

m~x,x8!1 Id~x,x8!1nT~x8,x!
G .

~2.15!

We shall show in the next section that these indeed c
respond to field correlation functions in the case that the fi
state is able to be represented as a single Gaussian. M
generally, one must consider a probability distribution ov
different coherent fields and Green’s functions or varianc
in order to construct the overall density matrix.
2-4
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III. GAUSSIAN EXPECTATION VALUES

In order to use the Gaussian operator basis, a numbe
basic identities are needed. In this section, we derive r
tions between operator expectation values and moment
the distribution. Such moments also show how the gen
Gaussian representation incorporates the previously u
methods.

A. Gaussian trace

The trace of a generalized Gaussian is needed to nor
ize the density matrix. The trace is most readily calculated
using a well-known coherent-state identity@6#

Tr@L̂#5E ^zuL̂uz&
d2Mz

pM
. ~3.1!

Here we definez5(z1 , . . . ,zM). Next, introducing extended
vectorsz5(z,z* )T, z15(z* ,z), dz5z2a, and using the
eigenvalue property of coherent states,âuz&5zuz&, we find
that

Tr@L̂#5

VE d2Mzexp@2dz1s21dz/2#

pMAusu
. ~3.2!

The normalizing factor can now be recognized as the de
minant expression arising in a classical Gaussian. For
ample, in the single-mode case, one obtains for the norm
izing determinant that

1

Ausu
5

1

A~11n!22mm1
. ~3.3!

We can thus calculate the value of the normalization fr
standard Gaussian integrals, as detailed in Appendix B,
vided s has eigenvalues with a positive real part. The res
is

Tr@L̂#5V. ~3.4!

Thus for L̂ itself to correspond to a normalized dens
matrix, we must haveV51. In a general expansion of
density matrix, there may be terms which do not have t
normalization, with the proviso the average weight still
^V&51. This freedom of having different weights on diffe
ent members of the ensemble provides a way of introduc
gauge variables, which can be used to improve the efficie
of the stochastic sampling but which do not affect the av
age result. The weight also allows calculations to be p
formed in which the trace of the density matrix is not pr
served, as in canonical-ensemble calculations.

B. Expectation values

Given a density matrix expanded in Gaussian operator
is essential to be able to calculate operator expectation
ues. This can be achieved most readily if the operatorÔ is
written in antinormally ordered form, as
06382
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ûi~ â!v̂ i~ â†!5o~ â!. ~3.5!

Since the density matrix expansion is normally ordered
definition, the cyclic properties of a trace allows the expe
tation value of any antinormally ordered operator to be re
ranged as a completely normally ordered form. Hence,
lowing a similar coherent-state expansion procedure to
the previous subsection, we arrive at an expression an
gous to the kernel trace, Eq.~3.2!:

^Ô&5

TrF(
i

v̂ i~ â†!r̂ûi~ â!G
Tr@ r̂#

5

E P~lW !O~lW !VdlW

E P~lW !VdlW

5^O~lW !&P . ~3.6!

Here we have introduced an equivalence between the q
tum expectation valuêÔ& and the weighted probabilistic
averagê O(lW )&P . This is anantinormallyorderedc-number
operator equivalence in phase space ofO(lW );Ô, where the
eigenvalue relations of coherent states are utilized to ob

O~lW !5

E d2Mzo~z!exp@2dz1s21dz/2#

pMAusu
5^o~z!&lW .

~3.7!

Here^o(z)&lW represents theclassicalGaussian average o
the c-number functiono(z). In other words, all quantum
averages are now obtained by a convolution of a class
Gaussian average with a widthsL that depends on the kerne
parameterlW , together with a probabilistic average overlW ,
with a widthsP that depends on the phase-space distribut
P(lW ). The situation is depicted schematically in Fig. 1.

Consider the first-order moment whereÔ5âm . This is
straightforward, aso(z)5zm , and the Gaussian average
o(z) is simply the Gaussian meanam :

^âm&5ām5^am&P . ~3.8!

More generally, to calculate the antinormally ordered m
mento(â)5$âm1

âm2
•••âmn

%, one must calculate the corre

sponding Gaussian momento(z)5zm1
zm2

•••zmn
. This is

most easily achieved by use of the moment-generating fu
tion for the Gaussian distribution in Eq.~3.7!, which is

xA~ t,lW !5et* a1t* s t/2, ~3.9!

where t5(t1 , . . . ,tM ,t1* , . . . ,tM* )5(t,t* T). General mo-
ments of the Gaussian distribution are then given by

^o~z!&lW 5
]n

]tm1
* ]tm2

* •••]tmn
*

xA~ t,lW !U
t50

, ~3.10!

where it must be remembered that the adjoint vectort* is not
independent oft. We note that averaging the momen
2-5



p

ed
st

th

c

g
le

ve
th

t
ela
d
er

n

is
n
re
a
o

od
u
tin

ob
o

ss-

lo-
um

rre-
wn
ble

ard

hill

red

er

ger
n al-

vari-
sity
e

a-
ssian

J. F. CORNEY AND P. D. DRUMMOND PHYSICAL REVIEW A68, 063822 ~2003!
generating function over the distributionP(lW ) gives the an-
tinormal quantum characteristic function of the density o
erator:

xA~ t,t* ![Tr$r̂et* âeâ† t%5E P~lW !Vet* a1t* s t/2dlW .

~3.11!

This equation is an alternative way of~implicitly ! defining
the GaussianP distribution as a function whose generaliz
Fourier transform is equal to the quantum characteri
function.

As an example of a moment calculation, one obtains
c-number operator equivalence for generalnormally ordered
quadratic term as

^:âmân
† :&5^aman

11smn
N &P , ~3.12!

where we have introduced the normally ordered covarian

sN5s2I . ~3.13!

Writing these out in more detail, we obtain the followin
central results for calculating normally ordered observab
up to quadratic order:

^âi&5^a i&P

^âi
†&5^a i

1&P

^âi â j&5^a ia j1mi j &P

^:âi â j
† :&5^a ia j

11ni j &P

^âi
†â j

†&5^a i
1a j

11mi j
1&P .

~3.14!

Comparing these equations with the schematic diagram
Fig. 1, we see that, as expected from a convolution, the o
all variance of any quantity is the sum of the variances of
two convolved distributions: that is,s5sL1sP . The re-
sults also support our interpretation given in Sec. II B than
andm are, respectively, the normal and anomalous corr
tions that appear in many-body theory—except for the ad
tional feature that we can now allow for distributions ov
these correlations. The expressions in theP averages on the
right-hand side are not complex conjugate for Hermitia
conjugate operators, because the kernelL̂(lW ) is generically
not Hermitian. Of course, after averaging over the entire d
tribution, one must recover a Hermitian density matrix, a
hence the final expectation values of annihilation and c
ation operators will be complex conjugate. Using the char
teristic function, one can extend these to higher-order m
ments via the standard Gaussian factorizations in which
moments of fluctuations vanish, and even moments of fl
tuations are expressed as the sum over all possible dis
pairwise correlations.

C. Quantum field expectation values

The results obtained above can be applied directly to
taining the corresponding expectation values of normally
dered field operators:
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^Ĉi~x!&5^C i~x!&P ,

^Ĉi
†~x!&5^C i

1~x!&P ,

^Ĉi~x!Ĉj~y!&5^C i~x!C j~y!1mi j ~x,y!&P ,

^:Ĉi~x!Ĉj
†~y!:&5^C i~x!C j

1~y!1ni j ~x,y!&P ,

^Ĉi
†~x!Ĉj

†~y!&5^C i
1~x!C j

1~y!1mi j
1~x,y!&P .

~3.15!

These results show that in the field formulation of the Gau
ian representation, the phase-space quantitiesni j (x,y) and
mi j (x,y) correspond to single-time Greens functions, ana
gous to those found in the propagator theory of quant
fields.

D. Comparisons with other methods

It is useful at this stage to compare these operator co
spondences with the most commonly used previously kno
representations, as shown in Table I. For simplicity, this ta
only gives a single-mode comparison.

In greater detail, we notice the following.
~i! If smn5dmn , these results correspond to the stand

ones for the normally ordered positive-P representation.
~ii ! If we consider the Hermitian case ofa* 5a1 as well,

but with smn5(n21)dmn , wheren5(s21)/2, we obtain
the ‘‘s-ordered’’ representation correspondences of Ca
and Glauber.

~iii ! These include, as special cases, the normally orde
Glauber-SudarshanP representation (n50), and the sym-
metrically ordered representation of Wigner (n521/2).

~iv! The antinormally ordered HusimiQ function is recov-
ered as the singular limitn→21.

~v! In the squeezed-state basis, the parametersn, m are not
independent, as indicated in the table. The particle numbn
is a functionn(umu) of the squeezingm. The exact relation-
ship is given later.

The Gaussian family of representations is much lar
than the traditional phase-space variety, because we ca
low other values of thesmn variance—for example,
squeezed or thermal state bases. For thermal states, the
ance corresponds to a Hermitian, positive-definite den
matrix if ni j is Hermitian and positive definite, in which cas

TABLE I. Classification of commonly used single-mode oper
tor representations in terms of parameters of the general Gau
basis.

Representation V a a1 n m m1

Wigner ~W! @4# 1 a a* 2
1
2 0 0

Husimi ~Q! @5# 1 a a* 21 0 0
Glauber-Sudarshan~P! @6# 1 a a* 0 0 0
s-ordered@7,8# 1 a a* (s21)/2 0 0
Squeezed@7,9# 1 a a* n(umu) m m*
Drummond-Gardiner (1P) @7# 1 a a1 0 0 0
Stochastic gauge@18,19# V a a1 0 0 0
2-6
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ni j behaves analogously to the Green’s function in a boso
field theory. In this case, a unitary transformation of the o
erators can always be used to diagonalizeni j , so thatni j
5nid i j .

~vi! For a general Gaussian basis, Gaussian operators
do not themselves satisfy density matrix requirements
permitted as part of the basis—provided the distribution
a finite width to compensate for this. This is precisely wh
happens, for example, with the well-knownQ function,
which always has a positive variance to compensate for
lack of fluctuations in the corresponding basis, which is H
mitian but not positive definite.

Distributions over the variance are also possible. It is
introduction of distributions over the variance that represe
the most drastic change from the older distribution metho
It means that there many new operator correspondence
use. Thus, the covariance itself can be introduced as a
namical variable in phase space, which can change and
tuate with time. In this respect, the present methods hav
similarity with the Kohn variational technique, which uses
density in coordinate space, and has been suggested i
context of BEC @24#. Related variational methods usin
squeezed states have also been utilized for BEC probl
@29#. By comparison, the present methods do not requ
either the local density approximation or variational appro
mations.

IV. GAUSSIAN DIFFERENTIAL IDENTITIES

An important application of phase-space representat
is to simulate canonical ensembles and quantum dynamic
a phase space. An essential step in this process is to ma
master equation of a quantum density operator onto a L
ville equation for the probability distributionP. The real or
imaginary time evolution of a quantum system depends
the action of Hamiltonian operators on the density mat
Thus it is useful to have identities that describe the action
any quadratic bosonic form as derivatives on elements of
Gaussian basis. These derivatives can, by integration
parts, be applied to the distributionP, provided boundary
terms vanish. The resultant Liouville equation forP is
equivalent to the original master equation, given certain
strictions on the radial growth of the distribution. When t
Liouville equation has derivatives of only second order
less~and thus is in the form of a Fokker-Planck equation!, it
is possible to obtain an equivalent stochastic differen
equation which can be efficiently simulated.

In general, there are many ways to obtain these identi
but we are interested in identities which result in first-ord
derivatives, where possible. Just as for expectation val
this can be achieved most readily if the operatorÔ is written
in factorized form, as in Eq.~3.5!.

In this notation, normal ordering means

:ÔL̂ :5(
i

v̂ i~ â†!L̂ûi~ â!. ~4.1!

We also need a notation for partial antinormal ordering:
06382
ic
-

hat
re
s
t

e
-

e
ts
s.
to
y-
c-
a

the

s
e
-

s
in
the
u-

n
.
f
e

by

-

r

l

s,
r
s,

$Ô:L̂:%5(
i

ûi~ â!:L̂: v̂ i~ â†!, ~4.2!

which indicates an operator product which antinormally
ders all terms except the normal term :L̂:. The Gaussian
kernelL̂ is always normally ordered, and hence we can o
the explicit normal-ordering notation, without ambiguity, fo
the kernel itself.

In this section, for brevity, we use ]/]lW
5(]/]V,]/]a,]/]a1,]/]n,]/]m,]/]m1) to symbolize ei-
ther ]/]xi or 2 i ]/]yi for each of thei 50, . . . ,p complex
variableslW . This is possible sinceL̂(lW ) is an analytic func-
tion of lW , and an explicit choice of derivative can be ma
later. We first note a trivial identity, which is neverthele
useful in obtaining stochastic gauge equivalences betw
the different possible forms of time-evolution equations:

V
]

]V
L̂5L̂. ~4.3!

A. Normally ordered identities

The normally ordered operator product identities can
calculated simply by taking a derivative of the Gaussian
erator with respect to the amplitude and variance parame

1. Linear products

The result for linear operator products follows direct
from differentiation with respect to the coherent amplitud
noting that each amplitude appears twice in the exponen

]

]am
1

L̂5
]

]am
1

V

Ausu
:exp@2dâ†s21dâ/2#:

5@s21#mn :dânL̂:. ~4.4!

It follows that

:âmL̂ :5Fam1smn

]

]an
1G L̂. ~4.5!

2. Quadratic products

Differentiating a determinant results in a transposed
verse, a result that follows from the standard cofactor exp
sion of determinants:

]usu
]snm

5smn
21usu. ~4.6!

Similarly, for the normalization factor that occurs in Gaus
ian operators,

]usu21/2

]snm
21

5
1

2
smnusu21/2. ~4.7!
2-7
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Hence, on differentiating with respect to the inverse cova
ance, we can obtain the following identity for any norma
ized Gaussian operator:

]

]snm
21

L̂5
]

]snm
21

V

Ausu
:exp@2dâ†

•s21
•dâ/2#:

5
1

2
:@smn2dâmdân

†#L̂:. ~4.8!

Using the chain rule to transform the derivative, it follow
that a normally ordered quadratic product has the follow
identity:

:dâmdân
†L̂ :5Fsmn22

]

]snm
21G L̂5Fsmn12smasbn

]

]sba
GL̂.

~4.9!

B. Antinormally ordered identities

The antinormally ordered operator product identities
all obtained from the above results, on making use of
algebraic reordering results in Appendix A.

1. Antinormal linear products

Antinormally ordered linear products can be transform
directly to normally ordered products. Hence, from Appen
A and Eq.~4.5!, we obtain

$âm :L̂:%5:@ âm2smn
21dân#L̂:5Fam1~smn2dmn!

]

]an
1G L̂

5Fam1smn
N ]

]an
1G L̂, ~4.10!

where we recall from Eq.~3.13! that the normally ordered
covariance is defined by:sN5s2I .

2. Quadratic products with one antinormal operator

This calculation follows a similar pattern to the previo
one:

$dâm :dân
†L̂:%5:F dâm1

]

]âm
† Gdân

†L̂:

5:@dmn1~dmr2smr
21!dân

†dâr#L̂:

5Fsmn12sma
N sbn

]

]sba
GL̂. ~4.11!

3. Quadratic products with two antinormal operators

We first expand this as the iterated result of two reord
ings, then apply the result for a linear antinormal produc
the innermost set of brackets:
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$dâmdân
† :L̂:%5$dâm$dân

†:L̂:%%

5$dâm@dnr2srn
21#:dâr

†L̂:%. ~4.12!

Next, the result above for one antinormal operator is use

$dâmdân
† :L̂:%5@dnr2srn

21#Fsmr12~sma2dma!

3sbr

]

]sba
GL̂

5Fsmn
N 12sma

N sbn
N ]

]sba
GL̂. ~4.13!

C. Identities in matrix form

The different possible quadratic orderings can be writ
in matrix form as

:â â†L̂ :5F :ââ†L̂: L̂ââT

â†Tâ†L̂ â†TL̂âTG ,

$â â†L̂%5F âL̂â† ââTL̂

L̂â†Tâ† $â†TL̂âT%
G ,

$â:â†L̂:%5F ââ†L̂ âL̂âT

â†TL̂â† $â†T:âTL̂:%
G . ~4.14!

With this notation, all of the operator identities can b
written in a compact matrix form. The resulting set of diffe
ential identities can be used to map any possible linea
quadratic operator acting on the kernelL̂ into a first-order
differential operator acting on the kernel.

For this reason, the following identities are the cent
result of this paper:

L̂5V
]

]V
L̂

:âL̂ :5aL̂1s
]L̂

]a1
,

$âL̂%5aL̂1sN
]L̂

]a1
,

:dâdâ†L̂ :5sL̂12s
]L̂

]s
s,

$dâ:dâ†L̂:%5sL̂12sN
]L̂

]s
s,

$dâdâ†L̂%5sNL̂12sN
]L̂

]s
sN. ~4.15!
2-8
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Here the derivatives are defined as

]

]a
5X ]

]a
,S ]

]a1D TC,
]

]a1
5S ]/]a1

~]/]a!TD ,

S ]

]s D
m,n

5
]

]snm
. ~4.16!

It should be noted that the matrix and vector derivativ
involve taking the transpose. We note here that for notatio
convenience, the derivatives with respect to thesm,n are for-
mal derivatives, calculated as if each of thesn,m were inde-
pendent of the others. With a symmetry constraint, the ac
derivatives ofL̂ with respect to any elements ofn or any
off-diagonal elements ofm will differ from the formal de-
rivatives by a factor of two. Fortunately, because of the su
mation over all derivatives in the final Fokker-Planck equ
tion, the final results are the same, regardless of whethe
not the symmetry ofsm,n is explicitly taken into account a
this stage.

The quadratic terms can also be written in a form witho
the coherent offset terms in the operator products. Thi
often useful, since while the original Hamiltonian or mas
equation may not have an explicit coherent term, terms
this can arise dynamically. The following result is obtaine

:â â†L̂ :5a
]L̂

]a
s1s

]L̂

]a1
a11~ â â11s!L̂12s

]L̂

]s
s,

$â:â†L̂:%5a
]L̂

]a
s1sN

]L̂

]a1
a11~ â â11s!L̂

12sN
]L̂

]s
s,

$â â†L̂%5a
]L̂

]a
sN1sN

]L̂

]a1
a11~ â â11sN!L̂

12sN
]L̂

]s
sN. ~4.17!

One consequence of these identities is that the time e
lution resulting from a quadratic Hamiltonian can always
expressed as a simple first-order differential equation, wh
therefore corresponds to a deterministic trajectory. This r
tionship will be explored in later sections: it is quite differe
to the result of a path integral, which gives a sum over ma
fluctuating paths for a quadratic Hamiltonian. Similarly, t
time evolution for cubic and quartic Hamiltonians can
ways be expressed as a second-order differential equa
which corresponds to a stochastic trajectory.
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D. Identities for quantum field operators

The operator mappings can also be succinctly written
the field-theoretic notation as

:Ĉ~x!L̂ :5C~x!L̂1E d3x8s~x,x8!
]L̂

]C1~x8!
,

$Ĉ~x!L̂%5C~x!L̂1E d3x8sN~x,x8!
]L̂

]C1~x8!
,

:dĈ~x!dĈ~x8!†L̂ :5s~x,x8!L̂12E E d3x9d3x-s~x,x9!

3
]L̂

]s~x9,x-!
s~x-,x8!,

$dĈ~x!:dĈ~x8!†L̂:%5s~x,x8!L̂

12E E d3x9d3x-sN~x,x9!

3
]L̂

]s~x9,x-!
s~x-,x8!,

$dĈ~x!dĈ~x8!†L̂%5sN~x,x8!L̂

12E E d3x9d3x-sN~x,x9!

3
]L̂

]s~x9,x-!
sN~x-,x8!, ~4.18!

where the vector quantum fields and covariances are as
fined in Sec. II C. The normal field correlation matrix
sN(x,x8)5s(x,x8)2Id(x,x8) and the functional derivatives
have been defined as

]

]C js~x!
5

1

AV
(

k
e2 isk.x

]

]ak js
,

]

]C js
1~x!

5
1

AV
(

k
eisk.x

]

]ak js
1

,

]

]s js, j 8s8~x,x8!
5

1

V (
k

(
k8

e2 i (s8k•x2sk8•x8)
]

]sk8 js,k j 8s8

.

Again we have the convention for matrix derivatives that

S ]

]s~x,x8!
D

js, j 8s8

5
]

]s j 8s8, js~x,x8!
.

V. EXAMPLES OF GAUSSIAN OPERATORS

This section focuses on specific examples of Gauss
operators and relates them to physically useful pure state
2-9
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density matrices. We begin by defining the class of Gaus
operators that correspond to physical density matrices,
fore looking at examples of specific types of states that
be represented, such as coherent, squeezed, and therm
each of these specific cases, the conventional parametriz
can be analytically continued to describe a non-Hermit
basis for a positive representation. We show how these b
include and extend those of previously defined represe
tions and calculate the normalization rules and identities
apply in the simpler cases.

A. Gaussian density matrices

A Gaussian operator can itself correspond to a phys
density matrix, in which case the corresponding distribut
is ad function. This is the simplest possible representation
a physical state. Gaussian states or physical density mat
are required to satisfy the usual constraints necessary for
density matrix: they must be Hermitian and positive defin
From the moment results of Eq.~3.14!, the requirement of
Hermiticity generates the following immediate restrictio
on the displacement and covariance parameters:

a†5a1,

n†5n,

m†5m1. ~5.1!

In addition, there are requirements due to positive d
niteness. To understand these, we first note that whenn is
Hermitian, as it must be for a density matrix, it is diagon
izable via a unitary transformation on the mode operato
Therefore, with no loss of generality, we can consider
case of diagonaln—i.e., nk j5nkdk j . The positive definite-
ness of the number operator then means that the num
eigenvalues are real and non-negative:

nk>0. ~5.2!

In the diagonal thermal density matrix case, but w
squeezed correlations as well, satisfying the density ma
requirements means that there are additional restrict
@30#. Consideration of the positivity of products likeX̂k jX̂k j

†

whereX̂k j5mâk1nâ j
† means that one must also satisfy t

inequalities nk(11nj )>umk ju2. This implies a necessar
lower bound on the photon number in each mode:

nk>n~ umkku!5Aumkku211/421/2. ~5.3!

Examples of Gaussians of this type are readily obtai
by first generating a thermal density matrix, then apply
unitary squeezing and/or coherent displacement operati
which preserve the positive definite nature of the origi
thermal state. This produces a pure state if and only if
starting point is a zero-temperature thermal state or vacu
state. Hence, the general physical density matrix can be w
ten in factorized form as

L̂r5D̂~a!Ŝ~j!L̂th~ n̄!Ŝ~2j!D̂~2a!. ~5.4!
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Here

L̂th~ n̄!5
1

u11n̄u
:exp~2â†@11n̄#21â!: ~5.5!

is a thermal density matrix completely characterized by
number expectation:n̄[Tr@ :ââ†:L̂th(n̄)#, where n̄ must be
Hermitian for the operator to correspond to a physical d
sity matrix. We show the equivalence of this expression
the more standard canonical Bose-Einstein form in the n
section.

The unitary displacement and squeezing operators ar
usually defined in the literature:

D̂~a!5eaâ†2âa* ~5.6!

and

Ŝ~j!5e2â†jâ†/21âj* â/2, ~5.7!

where the vectora is, as before, the coherent displaceme
for each mode. The symmetric matrixj gives the angle and
degree of squeezing for each mode, as well as the squee
correlations between each pair of modes.

In Table II, we give a comparison of the Gaussian para
eters found in the usual classifications of physical den
matrices of bosons, for a single-mode case.

B. Thermal operators

1. Physical states

It is conventional to write the bosonic thermal dens
operator for a noninteracting Bose gas in grand canon
form as@31#

r̂ th~f!5)
k

@12e2fk#exp@2fkâk
†âk#, ~5.8!

wherefk5ek /kT. Here the modes are chosen, with no lo
of generality, to diagonalize the free Hamiltonian with mo
energiesek , and for the case of massive bosons we ha
included the chemical potential in the definition of the e
ergy origin. To show how this form is related to the norma
ordered thermal GaussianL̂th(n̄) of Eq. ~5.5!, we simply
note that sincen̄ is Hermitian, it can be diagonalized by
unitary transformation. The resulting diagonal form in eith

TABLE II. Parameters of single-mode Gaussian density ma
ces of bosons.

Physical state V a a1 n m m1

Vacuum state 1 0 0 0 0 0
Coherent state 1 a a* 0 0 0
Thermal 1 0 0 n>0 0 0
Squeezed vacuum 1 0 0 n(umu) m m*
Squeezed coherent 1 a a* n(umu) m m*
Squeezed thermal 1 a a* n>n(umu) m m*
2-10



a
.

tri

ng

pr
t

te
s

ic

te
os

rt

s
ho

n
th

at
a

tor
t-

able
ates.

een

ub-
en-
or

ra-

at

tor

mal
the

sim-
rent
ition
un-
nic

GAUSSIAN QUANTUM OPERATOR REPRESENTATION . . . PHYSICAL REVIEW A68, 063822 ~2003!
expression is therefore diagonal in a number state basis
is uniquely defined by its number state expectation value

Clearly, one has for the usual canonical density ma
that

^nur̂ thun&5)
k

@12e2fk#exp@2fknk#, ~5.9!

while it is straightforward to show that the correspondi
normally ordered expression is a binomial:

^nuL̂th~ n̄!un&5)
k

@11n̄k#
21F12

1

11n̄k
G nk

. ~5.10!

As one would expect, these expressions are identical
vided one chooses the standard Bose-Einstein result for
thermal occupation as

n̄k5
1

efk21
. ~5.11!

These results also show that whenn̄50 one has a vacuum
state, corresponding to a bosonic ground state at zero
perature. In summary, the normally ordered thermal Gau
ian state is completely equivalent to the usual canon
form.

2. Generalized thermal operators

A simple non-Hermitian extension of the thermal sta
can be defined as an analytic continuation of the usual B
Einstein density matrix for bosons in thermal equilibrium
We define a normally ordered thermal Gaussianoperatoras
having zero mean displacement and zero second- or fou
quadrant variance:

L̂~V,0,0,n,0,0!5
V

uI1nu
:exp@~ I1n! i j

21âi
†â j #:.

~5.12!

Such operators are an analytic continuation of previou
defined thermal bases and are related to thermofield met
@32#.

As well as the usual Bose-Einstein thermal distributio
the extended thermal basis can represent a variety of o
physical states. As an example, consider the general m
elements of an analytically continued single-mode therm
Gaussian operator in a number-state basis, with 111/n̄
5exp@f#5exp@(r1ic)#. These are

^nuL̂th~ n̄!un8&5^nu@12e2f#exp@2fn̂#un8&

5dnn8@12e2f#exp@2n~r 1 ic!#.

~5.13!

Now consider the following single-mode density matrix:
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r̂5
1

2pE0

2p

@12e2f#21exp@n0~r 1 ic!#L̂th~ n̄!dc.

~5.14!

Taking matrix elements in a number-state basis gives

^nur̂un8&5
dnn8
2p E

0

2p

e2(r 1 ic)(n2n0)dc5dnn8dnn0
.

~5.15!

This effectively Fourier transforms the thermal opera
on a circle of radiusun0u around the origin, thereby genera
ing a pure number state with boson number equal ton0.
Thus, extended thermal bases of this type are certainly
to represent non-Gaussian states like pure number st
Nevertheless, they cannot represent coherences betw
states of different total boson number.

3. Thermal operator identities

The operator identities for the thermal operators are a s
set of the ones obtained previously. There are no useful id
tities that map single operators into a differential form; n
are there any for products likeâi â j . However, all quadratic
products that involve both annihilation and creation ope
tors have operator identities.

With this notation, and taking into account the fact th
differentiation with respect ton now explicitly preserves the
skew symmetry of the generalized variance, the opera
identities can be written

L̂5V
]

]V
L̂

:ââ†L̂:5~11n!L̂1~11n!
]L̂

]n
~11n!,

$â:â†L̂:%5~11n!L̂1n
]L̂

]n
~11n!,

$:âL̂:â†%5~11n!L̂1~11n!
]L̂

]n
n,

$ââ†L̂%5nL̂1n
]L̂

]n
n. ~5.16!

C. Coherent projectors

1. Physical states

Next, we can include coherent displacements of a ther
Gaussian in the operator basis. This allows us to compare
Gaussian representation with earlier methods using the
plest type of pure-state basis, which is the set of cohe
states. These have the property that the variance in pos
and momentum is fixed and always set to the minimal
certainty values that occur in the ground state of a harmo
oscillator.
2-11



e

e

rit

s
io
at
n
th

o
s.

t
c

di
rr
m
c

to
rin
a
a

e
as
ra

ce

ib
o
at
ll
ct

to
ith
ear

led

i-

en-
in-
to

ion.
r is

f a
or-

on
s of

-
ith-
ob-

e
on-
ly
qua-

n
s-

J. F. CORNEY AND P. D. DRUMMOND PHYSICAL REVIEW A68, 063822 ~2003!
In general, we consider anM-mode bosonic field. In an
M-mode bosonic Hilbert space, the normalized coher
statesua& are the eigenstates of annihilation operatorsâ with
eigenvaluesa. The corresponding Gaussian density matric
are the coherent pure-state projectors:

L̂c~a!5ua&^au, ~5.17!

which are the basis of the Glauber-SudarshanP representa-
tion. To compare this with the Gaussian notation, we rew
the projector using displacement operators as

L̂c~a!5eâ†
•au0&^0uea* •â2uau2. ~5.18!

Since the vacuum state is an example of a thermal Gaus
and the other terms are all normally ordered by construct
this is exactly the same as the Gaussian oper
L̂(1,a,a* ,0,0,0). In other words, if we restrict the Gaussia
representation to this particular subspace, it is identical to
Glauber-SudarshanP representation@6#. This pioneering
technique was very useful in laser physics, as it directly c
responds to easily measured normally ordered product
has the drawback that it is not a complete basis, unless
set of distributions is allowed to include generalized fun
tions that are not positive definite.

Other examples of physical states of this type are the
placed thermal density operators. These physically co
spond to an ideal coherently generated bosonic mode fro
laser or atom laser source, together with a thermal ba
ground. They can be written as

L̂c~a,n̄!5L̂~1,a,a* ,n̄,0,0!5eâ†
•a2âa* L̂th~ n̄!ea* •â2â†

•a.
~5.19!

2. Generalized coherent projectors

There are two ways to generalize the coherent projec
into operators that are not density matrices: either by alte
the thermal boson numbern̄ so it does not correspond to
physical state or by changing the displacements so they
not complex conjugate to each other.

The first procedure is the most time-honored one, sinc
is the route by which one can generate the classical ph
space representations that correspond to different ope
orderings. The Wigner@4#, Q-function @5#, ands-ordered@7#
bases are very similar to Gaussian density matrices, ex
with negative mean boson numbers:

L̂W~a!5L̂~1,a,a* ,2I /2,0,0!,

L̂Q~a!5L̂~1,a,a* ,2I ,0,0!,

L̂s~a!5L̂~1,a,a* ,I ~s21!/2,0,0!. ~5.20!

As pointed out in the previous subsection, it is also poss
to choosen̄ to be non-Hermitian, which would allow one t
obtain representations of coherently displaced number st
However, there is a problem with this class of non-norma
ordered representations. Generically, they have a restri
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set of operator identities available and typically lead
Fokker-Planck equations of higher than second order—w
no stochastic equivalents—when employed to treat nonlin
Liouville equations.

Another widely used complete basis is the sca
coherent-state projection operator used in the positive-P rep-
resentation@17# and its stochastic gauge extensions@18#:

L̂P~V,a,b!5V
ua&^b* u

^b* ua&
. ~5.21!

Here we have introducedb* as a vector amplitude for the
coherent stateub* &, in a similar notation to that used prev
ously.

This expansion has a complex amplitudeV and a dynami-
cal phase space which is of twice the usual classical dim
sion. The extra dimensions are necessary if we wish to
clude superpositions of coherent states, which give rise
off-diagonal matrix elements in a coherent state expans
To compare this with the Gaussian notation, the projecto
rewritten using displacement operators as

L̂P~V,a,b!5Veâ†
•au0&^0ueb•â2b•a5L̂~V,a,b,0,0,0!.

~5.22!

This follows since the vacuum state is an example o
thermal Gaussian, and the other terms are all normally
dered by construction. From earlier work@17#, it is known
that any Hermitian density matrixr̂ can be expanded with
positive probability in the overcomplete basisL̂P , and it
follows that the same is true forL̂(lW ).

The effects of the annihilation and creation operators
the projectors are obtained using the results for the action
operators on the coherent states, giving

L̂5V
]

]V
L̂

âL̂5aL̂

â†L̂5Fb1
]

]aGL̂
L̂â5Fa1

]

]bGL̂
L̂â†5bL̂. ~5.23!

Note that here one hassN50, and thus all the antinor
mally ordered identities have just coherent amplitudes w
out derivatives, in agreement with the general identities
tained in the previous section. In treating nonlinear tim
evolution, this has the advantage that some fourth-order n
linear Hamiltonian evolution can be treated with on
second-order derivatives, which means that stochastic e
tions can be used. In a similar way, one can treat some~but
not all! quadratic Hamiltonians using deterministic evolutio
only. The fact that all derivatives are analytic—which is po
2-12
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sible sincebÞa* —is an essential feature in obtaining st
chastic equations for these general cases@17#.

D. Squeezing projectors

1. Physical states

The zero-temperature subset of the Gaussian density
erators describe the set of minimum uncertainty states, w
in quantum optics are the familiar squeezed states@33,34#.
These are most commonly defined as the result of a squ
ing operator on a vacuum state, followed by a coherent
placement:

L̂sq~a,j,0!5D̂~a!Ŝ~j!u0&^0uŜ~2j!D̂~2a!. ~5.24!

The action of the multimode squeezing operator on annih
tion and creation operators is to produce ‘‘antisqueezed’’
erators

b̂5Ŝ~j!âŜ†~j!5mâ1nâ†T,

b̂†T5Ŝ~j!â†TŜ†~j!5m* â†T1n* â, ~5.25!

where the Hermitian matrixm(j) and the symmetric matrix
n(j) are defined as multimode generalizations of hyperb
functions@35,36#:

m[I 1
1

2!
jj* 1

1

4!
~jj* !21•••[cosh~ uju!,

n[j1
1

3!
jj* j1

1

5!
~jj* !2j1•••[

sinh~ uju!
uju

j.

~5.26!

Note thatm and n obey the hyperbolic relationmm2nn*
5I and have the symmetry propertym21n5(m21n)T

5n* m21. In the physics of Bose-Einstein condensatesb̂
and b̂† are just the Bogoliubov annihilation and creation o
erators for quasiparticle excitations.

The Bogoliubov parameters provide a convenient way
characterizing the minimum-uncertainty Gaussian operat
We therefore need to relate them to the parameters in
Gaussian covariance matrix. First consider the antinor
density moment for a squeezed state:

^ââ†&5Tr$ââ†L̂sq~a,j,0!%

5^0uŜ~2j!D̂~2a!ââ†D̂†~2a!Ŝ†~2j!u0&

5^0u~mâ2nâ†1a!~ â†m2ân* 1a* !u0&

5aa* 1mm. ~5.27!

Similarly, the anomalous moments are

^ââT&5aaT2mn,

^â†Tâ†&5a* Ta* 2n* m. ~5.28!
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Comparing these moments to those of the general Gaus
state@Eq. ~3.14!#, we see that

n5nn* ,

m52mn,

m* 52n* m. ~5.29!

The relationship between the different parametrizations
be written in a compact form if we make the definitions

m5S m 2n

2n* mT D ,

j5S 0 j

j* 0D , ~5.30!

in terms of which the relations are

s5
1

2
m21

1

2
I ,

m5exp~2j!. ~5.31!

One implication of this relation is that, just asm is not inde-
pendent ofn, so too n is not independent ofm for the
squeezed state. From the hyperbolic relation, we see
nT5m* (11n)21m. The determinant of the covariance m
trix, required for correct normalization, reduces to the si
pler form

usu5uI1nu5umu2. ~5.32!

This set of diagonal squeezing projectors forms the ba
that has previously been used to define squeezed-state b
representations@9#. Because the basis elements in such ba
are not analytic and the resultant distribution not alwa
positive, these previous representations suffer from the s
deficiency as the Glauber-SudarshanP representation~as op-
posed to the positive-P representation!; i.e., the evolving
quantum state cannot always be sampled by stochastic m
ods.

2. Generalized squeezing operators

A non-Hermitian extension of the squeezed-state ba
@Eq. ~5.24!# can be formed by analytic continuation of i
parameters—i.e., by a replacement of the complex con
gates ofa andj by independent matrices:a* →a1 andj*
→j1. In the Bogoliubov parametrization, this is equivale
to the replacementn* →n1 and tom being no longer Her-
mitian. These non-Hermitian operators are in the form
off-diagonal squeezing projectors and constitute the basi
a positive-definite squeezed-state representation. They
clude as a special case (n5n150, m5I ) the kernel of the
coherent-state positive-P expansion. Thus the completene
of the more general representation is guaranteed by the c
pleteness of the coherent-state subset, and we can al
2-13



g

ap
th

ar

ch
a

ta

r
ia
se
hi
a
,
y
a

b-
f a

lo-
the

and

it is
he
th

call
ner-
evo-
arry
nta-
ies

is
h
ted
y-
ua-
rator

u-

nd
-
in

sed
ua-
d to

sity
the

J. F. CORNEY AND P. D. DRUMMOND PHYSICAL REVIEW A68, 063822 ~2003!
find a positive-P function for any density operator by usin
the coherent-state-based representation.

E. Thermal squeezing operators

Mixed ~or classical! squeezed states are generated by
plying the squeezing operators to the thermal kernel, ra
than to the vacuum projector:

L̂sq~0,j,n̄!5Ŝ~j!L̂th~ n̄!Ŝ~2j!. ~5.33!

In this way, a pure or mixed Gaussian state of arbitr
spread can be generated.

Once again, we can relate the covariance parameters
acterizing the final state to the thermal and squeezing par
eters by comparing the moments:

^ââ†&5Tr$ââ†L̂sq~0,j,n̄!%

5Tr$~mâ2nâ†!~ â†m2ân* !L̂th~ n̄!%

5m~ n̄1I !m1nn̄Tn* , ~5.34!

since there are no anomalous fluctuations in a thermal s
Similarly, the squeezing moments are

^ââT&52m~ n̄1I !n2nn̄Tm* ,

^â†Tâ†&52m* n̄Tn* 2n* ~ n̄1I !m. ~5.35!

Thus the two parametrizations are related by

n5mn̄m1n~ n̄T1I !n* ,

m52m~ n̄1I !n2nn̄Tm* ,

m* 52m* n̄Tn* 2n* ~ n̄1I !m, ~5.36!

which can be written in a compact form as

s5mS n̄1
1

2
I Dm1

1

2
I , ~5.37!

where the thermal matrix is defined as

n̄5S n̄ 0

0 n̄TD . ~5.38!

As in the cases for the other bases, these squeezed the
states can be analytically continued to form a non-Hermit
basis for a positive-definite representation. Such a repre
tation would be suited to Bose-condensed systems, w
have a finite-temperature~thermal! character as well as
quantum~squeezed, or Bogoliubov! character. Furthermore
the lack of a coherent displacement is natural in atomic s
tems, where superpositions of total number are unphysic
06382
-
er

y

ar-
m-

te.

mal
n
n-

ch

s-
l.

F. Displaced thermal squeezing operators

Finally, the most general Gaussian density matrix is o
tained as stated earlier, by coherent displacement o
squeezed thermal state:

L̂sq~a,j,n̄!5D̂~a!Ŝ~j!L̂th~ n̄!Ŝ~2j!D̂~2a!. ~5.39!

In this way, a pure or mixed Gaussian state of arbitrary
cation as well as spread can be generated. In terms of
normally ordered Gaussian notation, the displacement
covariance of this case are given by

s5mS n̄1
1

2
I Dm1

1

2
I ,

a5S a

a* D . ~5.40!

VI. TIME EVOLUTION

The utility of the Gaussian representation arises when
used to calculate real or imaginary time evolution of t
density matrix. To understand why it is useful to treat bo
types of evolution with the same representation, we re
that the quantum theory of experimental observations ge
ally requires three phases: state preparation, dynamical
lution, and measurement. It is clearly advantageous to c
out all three parts of the calculation in the same represe
tion, in order that the computed trajectories and probabilit
are compatible throughout. Many-body state preparation
nontrivial and often involves coupling to a reservoir, whic
may result in a canonical ensemble. This can be compu
using imaginary time evolution, as explained below. D
namical evolution typically requires a real-time master eq
tion, while the results of a measurement process are ope
expectation values, which were treated in Sec. III.

A. Operator Liouville equations

Either real or imaginary time evolution occurs via a Lio
ville equation of generic form:

]

]t
r̂~ t !5L̂„r̂~ t !…, ~6.1!

where the Liouville superoperator typically involves pre- a
post-multiplication ofr̂ by annihilation and creation opera
tors. There are many examples of this type of equation
physics~and, indeed, elsewhere!. We will consider three ge-
neric types of equation here: imaginary-time equations u
to construct canonical ensembles, unitary evolution eq
tions in real time, and general nonunitary equations use
evolve open systems that are coupled to reservoirs.

We often assume that, initially, the steady-state den
matrix is in a canonical or grand canonical ensemble of
form

r̂u~t!5e2tĤ/\, ~6.2!
2-14
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wherer̂u(t) is unnormalized,t5\/kT, and we can include
any chemical potential in the Hamiltonian without loss
generality. If this is not known exactly, the ensemble c
always be calculated through an evolution equation int,
whose initial condition is a known high-temperature e
semble. This equation can also be expressed as a m
equation, though not in Lindblad form. The resulting equ
tion in ‘‘imaginary time,’’ or t, can be written using an an
ticommutator:

\
]

]t
r̂u52

1

2
@Ĥ,r̂u#1 . ~6.3!

Here the initial condition is just the unit operator.
By comparison, the equation for purely unitary-time ev

lution under a HamiltonianĤ is

i\
]

]t
r̂5@Ĥ,r̂ #. ~6.4!

More generally, one can describe either the equilibrat
of an ensemble or nonequilibrium behavior via a mas
equation representing the real-time dynamics of a phys
system. Equations for damping via coupling of a system
its environment must satisfy restrictions to ensure thatr̂ re-
mains positive definite. In the Markovian limit, the resultin
form is known as the Lindblad form@37#

]r̂

]t
52

i

\
@Ĥ,r̂ #1(

K
~2ÔKr̂ÔK

† 2@ r̂,ÔK
† ÔK#1!,

~6.5!

which consists of a commutator term involving the Herm
ian Hamiltonian operatorĤ, as well as damping terms in
volving an anticommutator of the arbitrary operatorsÔK .

B. Phase-space mappings

While the general operator equations become expon
tially complex for large numbers of particles and modes,
use of phase-space mappings provides a useful tool for m
ping these quantum equations of motion into a form that
be treated numerically, via random sampling techniques.

Using the operator identities in Eq.~4.15!, one can trans-
form the operator equations in any of these three cases
an integro-differential equation

]r̂~ t !

]t
5E P~lW ,t !@LAL̂~lW !#dplW , ~6.6!

where the differential operatorLA is of the general form

LA5U1Aj] j1
1

2
Di j ] i] j , ~6.7!

with derivative operators to the right, andi , j 50, . . . ,p for
the case of ap-parameter Gaussian. We only consider ca
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where terms with derivatives of order higher than 2 do n
appear, which implies a restriction on the nonlinear Ham
tonian structure.

We next apply partial integration to Eq.~6.6!, which, pro-
vided boundary terms vanish, leads to a Fokker-Planck eq
tion for the distribution,

]

]t
P~lW ,t !5LNP~lW ,t !, ~6.8!

where the differential operatorLN has derivatives to the left

LN5U2] jAj1
1

2
] i] jDi j . ~6.9!

Such Fokker-Planck equations have equivalent path-inte
and stochastic forms, which can be treated with random s
pling methods.

For example, in the Hamiltonian case, if the origin
HamiltonianĤN(â,â†) is normally ordered~annihilation op-
erators to the right!, then for a positive-P representation one
can immediately obtain

LN5
1

i\
@HN~a,b2a!2HN~b,a2b!#. ~6.10!

With the use of additional identities inV to eliminate the
potential termU, the Fokker-Planck equation can be samp
by stochastic Langevin equations for the phase-space v
ables. Note that this potential term only arises w
imaginary-time evolution. The first-order derivative~drift!
terms in the Fokker-Planck equation map to determinis
terms in the Langevin equations, and the second-order
rivative ~diffusion! terms map to stochastic terms. To obta
stochastic equations, we follow the general stochastic ga
technique@18#, which in turn is based on the positive-P
method.

To simplify notation, we have left the precise form of th
derivatives in the Fokker-Planck equation as yet unspecifi
Different choices are possible because the Gaussian ope
kernel is an analytic function of its parameters. The stand
choice in the positive-P method, obtained through th
dimension-doubling technique@17#, is such that when the
equation is written in terms of real and imaginary deriv
tives, all the coefficients are real and the diffusion is posit
definite. This ensures that stochastic sampling is always p
sible. Other choices are also possible and useful if anal
solutions are desired.

The structure of the noise terms in the stochastic eq
tions is given by the noise matrixB, which is defined as a
p3p8 complex matrix square root:

D5BBT. ~6.11!

Since this is nonunique, one can introduce diffusion gau
from a set of matrix transformationsU@ f(lW )# with UUT5I .
It is also possible to introduce arbitrary drift gauge termsg
which are used to stabilize the resulting stochastic equat
2-15
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dV

dt
5V@U1g•z~ t !#,

dl i

dt
5Ai1Bi j @z j~ t !2gj # ~ i , j .0!. ~6.12!

These are Ito stochastic equations with noise terms defi
by the correlations

^z i~ t !z j~ t8!&5d~ t2t8!d i j . ~6.13!

We note here that the use of stochastic equation samp
as described here represents only one possible way to sa
the underlying Fokker-Planck equation. Other ways are p
sible, including the usual Metropolis and diffusion Mon
Carlo methods found in imaginary-time many-body theor

In the remainder of this section, we consider quadra
Hamiltonians or master equations. We show that under
Gaussian representation, these give rise to purely deter
istic or ‘‘drift’’ evolution. We first treat the thermal case, the
derive an analytic solution to the dynamics governed b
general master equation that is quadratic in annihilation
creation operators. Following this are several examp
which show how the analytic solution can be applied
physical problems. While these examples can all be trea
in other ways, they demonstrate the technique, which will
extended to higher-order problems subsequently.

C. General quadratic master equations

Any quadratic master equation can be treated exactly w
the Gaussian distribution. To demonstrate this, we can
any quadratic master equation into the form

]

]t
r̂5A(0)r̂1Am

(1) :âmr̂:1Bm
(1)$âm : r̂:%1Anm :âmân

†r̂:

1Bnm$âmân
† : r̂:%1Cnm$âm :ân

†r̂:%,

5A(0)r̂1Tr@A(1)T:âr̂:1B(1)T$â: r̂:%#

1Tr@A:â â†r̂:1B$â â†: r̂:%1C$â:â†r̂:%#,

~6.14!

where the trace is a matrix structural operation~indicated by
the double underline!, not a trace over the operators. He
A(0) is a real number, whileA(1), andB(1) are complex col-
umn vectors with the generalized Hermitian property
A(1)* T5A(1)1, B(1)* T5B(1)1.

The quadratic termsA, B, and C are complex-numbe
matrices that have the implicit superscript (2) dropped
notational simplicity. By construction,A and B possess all
the skew symmetries ofs: A5A1 andB5B1; i.e., they are
Hermitian in the generalized sense defined earlier. The
trix C possesses only some of these skew symmetrie
namely, that the upper right and lower left blocks are ea
symmetric. Furthermore, the Hermiticity of the density o
06382
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erator requires that the matrix Hermitian conjugate be eq
to the generalized Hermitian conjugate:A* T5A1, B* T

5B1, andC* T5C1.
By expandingr̂ in the general Gaussian basis and app

ing the operator identities in Eq.~4.15!, we obtain a Liouville
equation for the phase-space distributionP that contains only
zeroth- and first-order derivatives. Since this can be trea
by the method of characteristics, the time evolution is de
ministic: every initial value corresponds uniquely to a fin
value, without diffusion or stochastic behavior. This can a
be solved analytically, since the time evolution resulti
from a quadratic master equation is linear in the Gauss
parameterslW .

1. Imaginary-time evolution

We consider this case in detail, even though it is relativ
straightforward, because it gives an example of phase-sp
evolution which would require diffusive or stochastic equ
tions using previous methods. The equation in ‘‘imagina
time,’’ or t, can be written using an anticommutator. Sin
we are only considering linear evolution here, the relev
Hamiltonian is always diagonalizable and can be written

Ĥ5\:â†vâ:. ~6.15!

Next, we need to cast the unnormalized density opera
equation

\
]

]t
r̂u52

1

2
@Ĥ,r̂u#1 ~6.16!

into differential form. All the terms are of mixed form, in
cluding both normal- and anti-normal-ordered parts, so
master equation can be written as

]

]t
r̂u5Tr@C$â:â†r̂u :%#1A(0)r̂u , ~6.17!

where

C52
1

2 Fv 0

0 vTG ,
A(0)52Tr v. ~6.18!

Using the identities in Eq.~4.15!, one finds the corre-
sponding differential operator to be

LAL̂5FA(0)L̂1Tr CS 11sN
]

]s D L̂sG . ~6.19!

This leads to the following equation for the distribution, aft
integration by parts~which requires mild restrictions on th
initial distribution!:

]P

]t
5(

k
vkF ]

]V
V1

]

]nk
~11nk!GnkP. ~6.20!
2-16
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Solving first-order Fokker-Planck-like equations in this for
leads to the deterministic characteristic equations

V̇52(
k

vkVnk,

ṅk52vknk~11nk!. ~6.21!

Integrating the deterministic equation for the mode oc
pationnk leads to the Bose-Einstein distribution also enco
tered in Eq.~5.11!:

nk5
1

evkt21
. ~6.22!

The weighting term occurs because this method of obtain
a thermal density matrix results in an unnormalized den
matrix with trace equal toV(t). From integration of the
above equation one finds, as expected from Eq.~5.8!, that

Tr@ r̂u#5V~t!5V0Pk@12e2vkt#21. ~6.23!

2. Real-time evolution

In the Lindblad form of a master equation which is re
evant to real-time evolution, further restrictions apply to
structure than just the symmetries given above.

The preservation of the trace ofr̂ in real-time master
equations requires thatA(1)52B(1). In addition, we require
that Tr B52Tr(A1C)5A(0) and that the matrix sumD
5A1B1C is anti skew symmetric:D152D. The result-
ant differential equation forP is simplified by the fact that
most of the symmetric terms from the identities are mu
plied by the antisymmetricD and thus give a trace of zero. I
particular, the zeroth-order terms will sum to zero, leavin

]P

]t
52F ]

]a
~E a1A(1)!1Tr

]

]s
~2B1E s1s E1!GP,

~6.24!

whereE52A1C522B2C1.
A Fokker-Planck equation such as this that contains o

first-order derivatives describes a drift of the distribution a
can be converted into equivalent deterministic equations
the phase-space variables:

ȧ5A(1)1E a,

ṡ52B1E s1s E1. ~6.25!

This system of linear ordinary differential equations h
the general solution

a~ t !5eEt~a~0!2a0!1a0,

s~ t !5eEt~s~0!2s0!eE1t1s0, ~6.26!

where a0 satisfiesE a052A(1), and the skew-symmetric
matrix s0 satisfiesE s01s0 E1522B. Note that ifE is
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Hermitian and negative definite, then the dynamics will co
sist of some initial transients with a decay to the steady st
a(`)5a0, s(`)5s0.

The first- and second-order physical moments also hav
simple analytic form

^â&~ t !5eEt~^â&~0!2a0!1a0,

^:â â†:&~ t !5eEt~^:â â†:&~0!2F~0!!eE1t1F~ t !,
~6.27!

where the steady state with coherent transients is given

F~ t !5s01^â&~ t !^â†&~ t !2I . ~6.28!

For a quadratic master equation in Lindblad form, t
Hamiltonian and damping operators can be expressed a

Ĥ5Tr~H:â â†: !,

ÔK5OK* â,

ÔK
† 5â† OK , ~6.29!

where, in block form,

H5S H(1) H(2)

H(2)* H(1)TD ,

OK5S OK
(1)

OK
(2)D ,

OK* 5~OK
(1)* ,OK

(2)* ! . ~6.30!

Thus the coefficients of density terms :ââ†: appear inH(1)

and the coefficients of squeezing termsââT appear inH(2).
The commutator term and each of the damping terms
provide a contribution to the matricesA, B, andC, which
we can label respectively asAH , AK , etc. The contributions
from the Hamiltonian term are thus

AH5S 0 iH(2)

2 iH(2)* 0 D ,

CH5S 22iH(1) 0

0 2iH(1)TD , ~6.31!

andBH52AH . With only the Hamiltonian~unitary! contri-
butions, the matrixE appearing in the general solution
anti-Hermitian.

In contrast, the contributions from the damping terms

AK5S ~OK
(2)OK

(2)* !T 2OK
(1)OK

(2)*

2OK
(2)OK

(1)* OK
(2)OK

(2)* D ,

BK5S OK
(1)OK

(1)* 2OK
(1)OK

(2)*

2OK
(2)OK

(1)* ~OK
(1)OK

(1)* !TD , ~6.32!
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and CK52AK2BK . With only these damping contribu
tions, the matrixE is Hermitian.

D. Bogoliubov dynamics

As an example of how the dynamics of a linear proble
can be solved exactly with these methods, consider the
dratic Hamiltonian

Ĥs5\ (
i , j 51

m
i

2
@x i j âi

†â j
†2x i j* âi â j #, ~6.33!

wherex is a complex symmetric matrix. In the single-mod
case, this Hamiltonian describes two-photon dow
conversion from an undepleted~classical! pump @38#. The
full multimode model describes quasiparticle excitation in
BEC within the Bogoliubov approximation@39#. Alterna-
tively, it may be used to describe the dissociation of a la
molecular condensate into its constituent atoms@40#. Recast-
ing this system into the general master-equation form@Eq.
~6.14!#, we find that the constant and linear terms vani
C50, and

E522B52A5F 0 x*

x 0 G . ~6.34!

The general solution@Eq. ~6.26!# can then be written

a~ t !5F cosh* ~ uxut ! x*
sinh~ uxut !

uxu

sinh~ uxut !
uxu

x cosh~ uxut !
G a~0!,

s~ t !5F cosh* ~ uxut ! x*
sinh~ uxut !

uxu

sinh~ uxut !
uxu

x cosh~ uxut !
G S s~0!2

1

2
I D

3F cosh* ~ uxut ! x*
sinh~ uxut !

uxu

sinh~ uxut !
uxu

x cosh~ uxut !
G1

1

2
I , ~6.35!

where the matrix cosh and sinh functions are as define
Eq. ~5.26!. If the system starts in the vacuum, for examp
then the first-order moments will remain zero, whereas
second-order moments will grow as

^:ââ†:&5
1

2
cosh* ~2uxut !2

1

2
I ,

^ââT&5
1

2
x*

sinh~2uxut !
uxu

. ~6.36!
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E. Dynamics of a Bose gas in a lossy trap

As a second example, we consider a trapped, noninter
ing Bose gas with loss modeled by an inhomogeneous c
pling to a zero-temperature reservoir@37#:

]

]t
r̂52 i @v i j âi

†â j ,r̂ #1
1

2
g i j ~2âi r̂â j

†2â j
†âi r̂2 r̂â j

†âi !,

~6.37!

where v is an Hermitian matrix that describes the mo
couplings and frequencies of the isolated system, andg is an
Hermitian matrix that describes the inhomogeneous a
loss. Recasting this in the general form, we find thatA(0)

5Tr g, A50, and

B5
1

2 FgT 0

0 g
G , C52 i F ṽ 0

0 2ṽ*
G , ~6.38!

whereṽ5v2 i gT/2. The block-diagonal form of these ma
trices allows us to write the solution to the phase-space eq
tions as

a~ t !5e2 i ṽta~0!,

a1~ t !5a1~0!ei ṽ†t,

n~ t !5e2 i ṽtn~0!ei ṽ†t,

m~ t !5e2 i ṽtm~0!e2 i ṽTt,

m1~ t !5ei ṽ†Ttm1~0!ei ṽ†t. ~6.39!

If g is positive definite and commutes withv, then the dy-
namics will be transient, and all these moments will decay
zero.

F. Parametric amplifier

A single-mode example that includes features of the p
vious two systems is a parametric amplifier consisting o
single cavity mode parametrically pumped~at ratex) via
down-conversion of a classical input field and subject to o
photon loss~at rateg) @41#:

]

]t
r̂5

1

2
@xâ†â†2x* ââ,r#1

1

2
g~2âr̂â†2â†âr̂2 r̂â†â!.

~6.40!

This corresponds to phase-space equations with

A5
1

2 F 0 x*

x 0 G , B5
1

2 F g 2x*

2x g G , C52
g

2 F1 0

0 1G ,
~6.41!

giving the solutions, for realx,
2-18
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a~ t !5e2gt/2Fcoshxt sinhxt

sinhxt coshxtGa~0!,

s~ t !5e2gt/2Fcoshxt sinhxt

sinhxt coshxtG~s~0!2s0!

3Fcoshxt sinhxt

sinhxt coshxtGe2gt/21s0,

s05
1

g224x2 Fg222x2 xg

xg g222x2G , ~6.42!

which are valid forgÞ2x. For g.2x, the system reache
the steady statea50, s5s0—i.e., ^â†â&05n052x2/(g2

24x2) and ^ââ&05m05xg/(g224x2).
While this result is well known and can be obtained

other ways@41,42#, it is important to understand the signifi
cance of the result in terms of phase-space distributions
all previous approaches to this problem using phase-sp
techniques, the dynamically changing variances meant
all distributions would necessarily have a finite width a
thus a finite sampling error. However, the Gaussian pha
space representation is able to handle all the linear term
the master equation simply by adjusting the variance of
basis set. This implies that there is no sampling error i
numerical simulation of this problem. Sampling error c
only occur if there are nonlinear terms in the master eq
tion. These issues relating to nonlinear evolution will
treated in a subsequent publication.

VII. CONCLUSION

The operator representations introduced here represen
largest class of bosonic representations that can be
structed using an operator basis that is Gaussian in the
ementary annihilation and creation operators. In this se
they give an appropriate generalization to the phase-sp
methods that started with the Wigner representation. Th
are a number of advantages inherent in this enlarged cla

Since the basis set is now very adaptable, it allow
closer match between the physical density matrix and ap
priately chosen members of the basis. This implies tha
should generally be feasible to have a relatively much n
rower distribution over the basis set for any given dens
matrix. Thus, there can be great practical advantages in u
this type of basis for computer simulations. Sampling err
typically scale as 1/AT for an ensemble ofT trajectories, so
reducing the sampling error gives potentially a quadratic
provement in the simulation time through reduction in t
ensemble size. As many-body simulations are extrem
computer intensive, both in real and imaginary time, t
could provide substantial improvements. Given the curren
projected limitations on computer hardware performan
improvement through basis refinement may prove esse
in practical simulations.
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We have derived the identities which are essential
first-principles calculations of the time evolution of quantu
systems, both dynamical~real time! and canonical~imagi-
nary time!. Any quadratic master equation has an exact
lution than can be written down immediately from the ge
eral form that we have derived. Higher-order problems w
nonlinear time evolution can be solved by use of stocha
sampling methods, since we have shown that all Hami
nians up to quartic order can be transformed into a seco
order Fokker-Planck equation, provided a suitable gaug
chosen that eliminates all boundary terms. Because
Gaussian basis is analytic, methods previously used for
stochastic gauge positive-P representation are therefore a
plicable for the development of a positive semidefinite diff
sion and corresponding stochastic equations@17,18# here.
The ability to potentially transformall possible Hamiltonians
of quartic order into stochastic equations did not exist
previous representations.

However, we can point already to a clear advantage to
present method in terms of deterministic evolution. For e
ample, the initial condition and complete time evolution
either a squeezed state~linear evolution in real time! or a
thermal state~linear evolution in imaginary time!, with a
quadratic master equation, are totally deterministic with
present method. By comparison, any previously used te
nique would result in stochastic equations or stochastic
tial conditions, with a finite sampling error, in either cas
While this is not an issue when treating problems with
known analytic solution, it means that in more demand
problems it is possible to develop simulation techniques
which the quadratic terms only give rise to determinis
rather than random contributions to the simulation, thus
moving the corresponding sampling errors.

Finally, we note that the generality of the Gaussian f
malism opens up the possibility of extending these repres
tations to fermionic systems.
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APPENDIX A: BOSONIC IDENTITIES

To obtain the operator identities required to treat the ti
evolution of a general Gaussian operator, we need a se
theorems and results about operator commutators. These
then be used to obtain the result of the action of any giv
quadratic operator on any Gaussian operator, as describ
the main text. We use the following bosonic identities whi
are known in the literature, but reproduced here for ease
reference

Commutation. Theorem~I!: Given an analytic function
p(â) with a power series expansion valid everywhere,
following commutation rules hold:
2-19
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@p~ â!,âi
†#5

]p~ â!

]âi

,

@ âi ,p~ â†!#5
]p~ â†!

]âi
†

. ~A1!

Proof. Using a Taylor series expansion ofp(â) around the
origin in âi , one can evaluate the commutator of each te
in the power series. Hence,

@p~ â!,âi
†#5(

n
F p̂n

n!
âi

n ,âi
†G5 (

n.0

p̂n

~n21!!
âi

n215
]p~ â!

]âi

.

~A2!

The second result follows by taking the Hermitian con
gate.

Ordering. Theorem~II !: Given any analytic normally or-
dered operator functionp(â†,â) with a power series expan
sion, the following ordering rules hold:

p~ â†,â!~ âi
†!n5F âi

†1
]

]âi
G n

p~ â†,â!,

~ âi !
np~ â†,â!5p~ â†,â!F âi1

]Q

]âi
†G n

. ~A3!

Here the left arrow of the differential operator indicates t
direction of differentiation. We can write these two identiti
in a unified form by introducing an antinormal orderin
bracket, denoted$: p̂:â%, which places all operators in ant
normal order relative to the normal term :p̂:. With this no-
tation, we can write a single ordering rule for all cases:

$:p~ â!:âm%5:F âm1
]

]âm
† Gp~ â!:. ~A4!

Proof. Sinceâi commutes with all other annihilation op
erators andâi

† commutes with creation operators, theorem~I!

also holds for any normally ordered operatorp(â†,â), with a
power series expansion, provided derivatives are interpr
as normally ordered also. The first case above then follo
directly from theorem~I!:

p~ â†,â!âi
†5F âi

†1
]

]âi
Gp~ â†,â!. ~A5!

The required result then follows by using the equation ab
n times, recursively. The second result is the Hermitian c
jugate of the first. The last result, Eq.~A4!, is simply a uni-
fied form that recreates the previous two equations. This
be applied recursively, since the right-hand side of this eq
tion is always normally ordered by construction.
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Corollary. The antinormal combination of a Gaussian o
eratorL̂g(â) and any single creation or annihilation operat
is given by a direct application of the ordering theorem, E
~A3!:

$:L̂g~ â!:âm%5:@ âm2smn
21dân#L̂g~ â!:. ~A6!

It should be noticed here that the above expression
sumes the covariance has the usual symmetry: then e
operator occurs twice in the Gaussian quadratic term, wh
cancels the factor of two in the exponent.

In the main text, these results are used directly to obt
all the required operator identities on the Gaussian opera

APPENDIX B: GAUSSIAN INTEGRALS

In deriving the normalization, moments, and opera
identities of the Gaussian representations, we have ha
calculate nonstandard integrals of complex, multidime
sional Gaussian functions. The basic Gaussian integral
must be evaluated is of the form

I 5E d2Mze2dz1s21dz/2, ~B1!

where, as in Eq.~3.2!, the covariances is a 2M32M non-
Hermitian matrix, anddz and dz1 are complex vectors o
length 2M . There are two major differences between th
expression and the better known form of the Gaussian i
gral. First, the vectorsdz5z2a anddz15z* 2a1 contain
offsets which are not complex conjugate:a* Þa1. Second,
the vectorz does not consist of 2M independent complex
numbers. Rather, it containsM independent complex num
bersz and their conjugatesz* .

To evaluate such an integral, we first write it explicitly
terms of real variables as

I 5E d2Mze2dz1s21dz/25E d2Mxe2(xT2x0
T)t21(x2x0)/2,

~B2!

where x5L z5(Rez,Im z), x05L a5((a1a1)/2,(a
2a1)/2i ), andt5L s L†, with the transformation matrix

L5
1

2 S I I

2 i I i I D . ~B3!

Note that the offset vectorx0 will be complex, unlessa*
5a1. We may remove it by changing variablesu5x2x0
and using contour integration methods to convert the inte
back into an integral on a real manifold.

With the offset removed, the square of the integral can
written in the form of a standard multidimensional Gaussi

I 25E d2Mxd2Mye2xT t21 x/2e2yT t21 y/2

5E d4Mue2u* t21 u/2, ~B4!
2-20
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whereu5x1 i y. Assuming that the matrixt21 can be di-
agonalized,l5U t21 U†, we can factor the integral into
product of 2M integrals over the complex plane:

I 25 )
m51

2M E d2wme2wm* lmmwm/2, ~B5!

wherew5U u. These integrals can be evaluated by a tra
formation to radial coordinates, giving
an

n

ev

,

.
d

u

te

,
c

ev
,

-

06382
-

I 25 )
m51

2M
2p

lmm
5~2p!2Mutu, ~B6!

which holds provided that all the Relmm>0—i.e., that all
eigenvalues oft have a positive real part. Finally, noting th
utu5uL21uusuuL21†u5222Musu, we find that

I 5pMAusu, ~B7!

with the condition that the eigenvalues ofusu have a positive
real part.
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