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Gaussian quantum operator representation for bosons
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We introduce a Gaussian quantum operator representation, using the most general possible multimode
Gaussian operator basis. The representation unifies and substantially extends existing phase-space representa-
tions of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It
enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum
uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results
in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic
methods.
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[. INTRODUCTION phase space is alouble dimensionwhere classically real
variables, such ag and p, now range over the complex
In this paper we develop a general multimode Gaussiaplane. This allows arbitrary quantuavolutionto be sampled
representation for a density matrix of bosons. As well asstochastically. Third, stochastigauge functions are in-
classical phase-space variables likep), the representation cluded. These arbitrary quantities do not affect the physical
utilizes a dynamical space of quantum uncertainties or cova€sults, but they can be used to overcome problems in the
riances. The extended phase space accommodates more eSipchastic sampling. Fourth, the_ phase space includes the set
ciently the content of a quantum state and allows the physic8f seécond-order moments oovariancesA phase space that
of many kinds of problems to be incorporated into the basidS enlarged in this way is able to accommodate more infor-
itself. The Gaussian expansion technique unifies and grea’Eﬁf"t!On about a general quantum state in a _smgle point. In
extends all the previous Gaussian-like phase-space repres wticular, any statépure or mixed W'th. Gagssmn statistics
tations used for bosons, including the Wigr@r,P, positive- can be represented as a single point in this phase space.

P and squeezed-state expansions. The operator basis a The Gaussian representation provides a link between
. q " pans ' P ; ase-space methods and approximate methods used in
includes non-Hermitian Gaussian operators, which are n

. . h I b ¢ ¢ bab any-body theory, which frequently treat normal and
density matrices themselves, but can form part of a probabls, o majous correlations or Green's functions as dynamical

listic expansion_ofgphysicgl density matrix. UnI.ike preViousobjects[l]. As well as being applicable to quantum optics
approachesany initial state is found to evolve with a deter- anq quantum information, a strong motivation for this repre-
ministic time evolution undeany quadratic Hamiltonian or  sentation is the striking experimental observation of BEC
master equation. (Bose-Einstein condensatiprin ultracold atomic systems
The complexity of many-body quantum physics is mani-[2]. Already the term “atom laser” is widely used, and ex-
fest in the enormity of the Hilbert space of systems with everperimental observation of quantum statistics in these systems
modest numbers of particles. This complexity makes it prois underway. Yet there is a problem in using previous quan-
hibitively difficult to simulate quantum dynamics with or- tum optics formalisms to calculate coherence properties in
thogonal states: no digital computer is large enough to storatom optics: interactions are generally much stronger with
the dynamically evolving state. However, quantum dynami-atoms than they are with photons, relative to the damping
cal calculations are possible, with finite precision, throughrate. The consequence of this is that one must anticipate
what are known as phase-space methods. These methods régrger departures from “semiclassical,” coherent-state be-
resent the evolving quantum state as probability distributiondiavior in atomic systems.
on some suitable phase space, which can be sampled via The present paper includes these nonclassical and inco-
stochastic techniques. The mapping to phase space can herent effects at the level of the basis for the operator repre-
made to be exact. Thus the precision of the final result isentation itself. The purpose of employing a Gaussian basis
limited only by sampling error, which can usually be reliably set is not only to enlarge the parameter &et hold more
estimated and which can be reduced by an increased numbiaformation about the quantum statéut also to include
of stochastic paths. basis states that are a close match to the actual states that are
Arbitrary guantum mechanical evolution cannot be repredikely to occur in interesting systems, such as dilute gases.
sented probabilistically on a phase space as is usually d&he payoff for increasing the parameter set is more efficient
fined. Thus the extended phase space employed here issampling of the dynamically evolving or equilibrium states
generalization of conventional phase space in several waysf many-body systems.
First, it is aquantumphase space, in which points can cor- The idea of coherent states as a quasiclassical basis for
respond to states with intrinsic uncertainty. Heisenberg’s unguantum mechanics originated with Scttimger[3]. Subse-
certainty relations can thus be satisfied in this way or, moreuently, Wigner[4] introduced a distribution for quantum
generally, by considering genuine probability distributionsdensity matrices. This method was a phase-space mapping
over phase space, to be sampled stochastically. Second, thdth classical dimensions and employed a symmetrically or-
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dered operator correspondence principle. Later developmentiis case generates a representation with a positive propaga-
included the antinormally ordere@ distribution[5], a nor-  tor, which allows the use of stochastic methods to sample the
mally ordered expansion called the diagoRatistribution  quantum dynamics. By extending the expansion to include a
[6], methods that interpolate between these classical phasgtochastic gauge freedom in these evolution equations, one
space distribution§7,8], and diagonal squeezed-state repre-can select the most compact possible time-evolution equation
sentationg9]. Each of these expansions either employs a18—20. With an appropriate gauge choice, this method is
explicit Gaussian density matrix basis or is related to onéXact for a large class of nonlinear Hamiltonians, since it
that does by convolution. They are suitable for phase-spac@iminates boundary terms that can otherwise 424¢ The
representations of quantum states because of the overco@general Gaussian representation used here also includes these
pleteness of the set of coherent states on which they afgatures and extends them to allow treatment of any Hamil-
based. tonian or master equation with up to fourth-order polynomial

Arbitrary pure states of bosons with a Gaussian wavel€ms- _ _
function or Wigner representation are often called the Other methods of theoretical physics that have compa-
squeezed statg40]. These are a superset of the coherentable goals are the path.-lntegral' techniques of quantum field
states and were investigated by Bogoliulfat] to approxi-  theory[22,23 and density functional methodg4], which
mately represent the ground state of an interacting Bose2'® Widely used to treat atomic and molecular systems. The
Einstein condensate—as well as in much recent work ifirst of these is exact in principle, but is almost exclusively
quantum optic§12]. Diagonal expansions analogous to theused in imaginary-time calculations of canonical ensembles
diagonalP representation have been introduced using a basid/ 9round states due to the notorious phase problem. The
of squeezed-state projectors, typically with a fixed squeezin§econd method has similarities with our approach in that it
parametef9]. However, these have not generally resulted in@/SO utilizes a density as we do. However, density functionals
useful dynamical applications, as they do not overcome th&'® normally combined with approximations like the local
problems inherent in using a diagonal basis, as we discusinsity approximation. Gaussian representation methods
below. have the advantage that they can treat both real- and

In operator representations, one must utilize a completénaginary-time evolution. In addition, the technique is exact
basis in the Hilbert space of density operators, rather than if! Principle, provided boundary terms vanish on partial inte-
the Hilbert space of pure states. Thermal density matricegation. _ _
for example, are not pure states, but do have a Gaugsian N Sec. Il, we define general Gaussian operators for a
representation and Wigner function. To include all threedensity operator expansion and introduce a compact notation
types of commonly used Gaussian states—the cohererr these operators, either in terms of mode operators or
squeezed, and thermal states—one can define a Gauss@y@ntum fields. In Sec. Ill, we calculate the moments of the
stateas a density matrix having a Gaussian posifver general Gaussian representation, relating them to physical
Wigner representatiof 3]. This definition also includes dis- duantities as well as to the moments of previous representa-
placed and squeezed thermal states. Gaussian states hd¢@s: Section IV gives the necessary identities that enable
been investigated extensively in quantum information and"St-Principles quantum calculations with these representa-
quantum entanglemefit4]. It has been shown that an initial tons: Equatior4.15 summarizes the relevant operator map-
Gaussian state will remain Gaussian under linear evolutioRiNds and constitutes a key result of the paper.
[15]. We give a number of examples in Sec. V of specific pure

However, the Gaussian density matrices that correspon@nd mixed stategand their non-Hermitian generalizations
to physical states dmot by themselves form a complete thqt are mcIug:ied m'the basis, and we give S|mpllf|ed versions
basis for the time evolution of all quantum density matrices Of important |de'nt|t|es for thesg cases. Section VI descrlbe;s
This problem, inherent in all diagonal expansions, is related®W the Gaussian representation can be used to deal with
to known issues in constructing quantum-classical corre€volution in either real or imaginary time. In particular, we
spondence$16] and is caused by the non-positive-definite SNTOW how it can be used to solve exactly any master equa-
nature of the local propagator in a classical phase space. It ion that is quadratic in annihilation and creation operators.
manifest in the fact that there is generally no equivalemsome useful normallzatlon integrals anq reordering |d§nt|t|es
Fokker-Planck equatioriwith a positive-definite diffusion for the Gaussian operators are pr_oved in the Appendixes.
matrix) that generates the guantum time evolution and, 'N & subsequent paper, we will apply these methods to
hence, no corresponding stochastic differential equation thatyStems with nonlinear evolution.
can be efficiently simulated numerically. This difficulty oc-
curs in nearly all cases except free fields and represents a
substantial limitation in the use of these diagonal expansion
methods for exact simulation of the quantum dynamics of The representations that give exact mappings between op-
interacting systems. erator equations and stochastic equations—an essential step

These problems can be solved by use of nonclassicabward representing operator dynamics in large Hilbert
phase spaces, which correspond to expansions in nospaces—are stochastic gauge expangi®8s-2Q on a non-
Hermitian bases of operatofgather than just physical den- classical phase space. Here, the generic expansion is written
sity matrices. One established example is the nondiagonatlown in terms of a complete set of operators that are typi-
positiveP [17] representation. The non-Hermitian basis incally non-Hermitian. This leads to the typical form

Il. GAUSSIAN REPRESENTATION
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Coherent displacements are introduced as column veators
and row vectorsa”. We define a Gaussian operator as an
exponential of an arbitrary quadratic form in annihilation and
= & creation operatorgor, equivalently, a quadratic form in po-
sition and momentum operatgrs

The simplest way to achieve this is to introduce extended

Gp - G|3 + GA 2M-vectors ofc numbers and operatorg:=(a,(a+)T) and

_ o - a=(a(a""), with adjoints defined as* =(a*,a") and

FIG. 1. The density-operator expansion in E2.1) can be in- éT:(é‘r’éT), together with a relative operator displacement
terpreted as a convolution of the probability distribut®mvith the — —

underlying distribution of the basis. The uncertainty or spread of the

physical state, indicated by the variangg, is shared between the a, o
distribution variancerp and the basis variance, . 1
- > A > > “ ~ é-M anm
p(t)=] P(N,H)A(N)dN, 2.1 sa=a—a=| .. |- L |. (2.3
where P(X,t) is a probability distributionA is a suitable ~t ot
basis for the class of density matrices being considered, and am M
d\ is the integration measure for the corresponding generalT'hese extended vectors are indexed where necessary with
ized phase-space coordinate See Fig. 1 for a conceptual Greek indicesu=1, . ..,2M.
illustration of this expansion. A general Gaussian operator is now an exponential of a

e 1 e oot enera uadraic fom i held-vector mode operaa.
typical physical states 6f a system, the sampling error will be or algt_abralc reasons, itis useful to employ normal or_dermg,
minimized, and if the state coincidés exactly with an elemenfind o introduce & compact notation using a generalized co-
! S . . : varianceo:
of the basis, then the distribution will be &function, with =
consequently no sampling error. A Wigner @+function ba- 0
sis, for example, generates a broad distribution even for AN)=—:exd —sa'o"1sa/2]:. (2.9
minimum uncertainty states. A general Gaussian basis, on the |g| =T
other hand, can generatedafunction distribution not only o ) _ o
for any minimum uncertainty state, but also for the ground Here the normalization factor involving/[g| is intro-
states of noninteracting finite-temperature systems. duced to simplify identities that occur later and plays a very
similar role to the exactly analogous normalization factor
) _ that occurs in the classical Gaussian distribution of probabil-
A. Gaussian operator basis ity theory. The M X 2M covariance matrix is conveniently

In this paper, we define the operator badigo be the Parametrized in terms dil XM submatrices as

most general Gaussian operator basis. The motivation for l+n  m
using the most general possible basis set is that when the o=| 1, (2.5
basis set members nearly match the states of interest, the =1m I+n

resulting distributions are more compact and have lower . . n
sampling errors in a Monte Carlo or stochastic calculation. InWhere nisa complexM XM matrix and m,m" are two
addition, a larger basis allows more choice of mappings, Swdependgnt symmetric compleMx M matrices. .
that lower-order differential correspondences can be utilized. Vith this choice, the covariance has a type of generalized
In some cases, a large basis set can increase computatiohf'mitian symmetry in whichr,,, =0+ v, provided
memory requirements, as more parameters are needed. TH§ interpret the matrix indices as cyclic n the sense that
disadvantage is outweighed when there is a substantial dé-?*2M. This can also be written as=¢ ", with the defi-

crease in the sampling error, due to the use of a more physflition that

cally appropriate basis. By choosing a general Gaussian op- a bl" [d <l
erator basis, rather than just a basis of Gaussian density = (2.6)
matrices, one has the additional advantage of a complete c d b a

representation for all non-Gaussian density matrices as Weul‘his definition implies that we intend the#” superscript to

If a 'SA? column vector oM bosonic annihilation opera- gefine an operation on the covariance matrix which is
tors anda’ the corresponding row vector of creation opera-equivalent to Hermitian conjugation of the underlying opera-

tors, their commutation relations are tors. If the Gaussian operator is in fact an Hermitian opera-
A ap tor, then so is the corresponding covariance matrix. In this
[aw,aj]1= ;- (2.2 case, the %" superscript is identical to ordinary Hermitian
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conjugation. The generalized Hermitian symmetry of the co-operator representation theory for fielf35-28 to more
variance means that all elements of the number correlation general basis sets. In a quantization voluvheone can ex-
appear twice, as do all except the diagonal elements of thpand

squeezing correlations,m™*.

The use of normal ordering allows simple operator iden- Vi (x)= i S 3, ek
" . : SOV K,j ’
tities to be obtained, but can easily be related to more com- V K
monly used unordered parametrizations. The Gaussian op-
erators include as special cases the density matrices of many - 1 L
useful and well-known physical states. For example, they ‘I’j(X)=\/—— > ay e v, 2.9
include the thermal states of a Bose-Einstein distribution, the vk

coherent states, and the squeezed states. They also includ
many more states than these, like the off-diagonal coherefY
state projectors used in the positiPeexpansion, which are
not density operators themselves, but can be used to expand
density operators. The details are given in Sec. V.

ﬁere the field commutators are
(9,00, %], (x)]= 8, S(x—x"). (2.10

With this notation, the quadratic term in the Gaussian ex-

ponent becomes
B. Extended phase space

The representation phase space is thus extended to 55%715&:] f 6\’1}T(X)0ﬁl(x,y) 5\1’(y)d3xd3y,
X=(Q,a,a",n,mm"). 2.7 - - (2.13)

The complex amplitud€), which appears in the normaliza- where we have introduced the extended vectb(x)
tion, acts as a dynamical weight on different stochastic tra= (§r, (¥")T) and s¥(x)=¥(x) — ¥ (x), which is the op-
jeCtorieS. It iS Useful in Ca|Cu|ati0nS in Wh|Ch the normaliza— erator ﬂuctuation raative_to the_coherent disp'acement or
tion of the density matrix is not intrinsica”y preserved, Suchc|assica| mean field. If we index the extended Vecto‘[}%

as canonical ensemble calculations, and also enables stoch@gieres= —1(1) for thefirst and second parts, respectively,

tic gauges to be included. _ _ this Fourier transform can be written compactly as
The complex vectorsr and ™ give the generalized co-

herent amplitudes for each modedefines the amplitudes of -

annihilation operators, while its “conjugate” a® defines Wis(x)= W ; ayjse TN (2.12

the amplitudes of the creation operat@’s The matrixn

gives the number, or normal, correlations between each paifhe notations~1(x,y) indicates a functional matrix inverse

of modes. The squeezing, or anomalous, correlations bggnere =

tween each pair of modes are givenroyandm™: the matrix

m defines the correlations of annihilation operators, while its 1 o ,

“conjugate” m™ defines the correlations of the creation op- f g (x,y)g(y,x )d y—|=6(x—x ): (2.13

erators. These physical interpretations of the phase-space

variables are supported by the results of Sec. Ill, where wend the relationship to the previous cross-variance matrix is

rigorously establish the connection of the phase-space varihat

ables to physical quantities.

In general, apart from the complex amplitude the total 1 PRV

numb%r of com%lex parameters r?1eededpto specify the nor-  Zis.i's'(XY) =y Zk kE Tijsrjrsr€ ST,

malizedM-mode Gaussian operator is (2.14
p=M(2+3M). (2.8 In the standard terminology of many-body theory and

field theory[1], these field variances are generalized equal-

Hence the phase-space variables can be writtenk as time Green’s functions and can be written as

=(No,\1, ... ,Ap), with the corresponding integration mea- , ) )

sure asdh = 2P+ Dy 16(x,x")+n(x,x") m(x,x")

g(xx’)= m(x,x")* [8(x,x")+n"(x",x) |’

C. Gaussian field operators (2.19

The above results define a completely general Gaussian We shall show in the next section that these indeed cor-
operator in terms of arbitrary bosonic annihilation and cre+espond to field correlation functions in the case that the field
ation operators, without reference to the field involved. It isstate is able to be represented as a single Gaussian. More
sometimes useful to compare this to a field-theoretic notagenerally, one must consider a probability distribution over
tion, in which we explicitly use a coordinate-space integraldifferent coherent fields and Green’s functions or variances,
to define the correlations. This provides a means to extenih order to construct the overall density matrix.
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Ill. GAUSSIAN EXPECTATION VALUES ) o .
. . 0=2 U(av;(@)=0(a). (35
In order to use the Gaussian operator basis, a number of i -
basic identities are needed. In this section, we derive rela- . i o
tions between operator expectation values and moments of Since the density matrix expansion is normally ordered by
the distribution. Such moments also show how the gener;geflnltlon, the cyclic properties of a trace allows the expec-

Gaussian representation incorporates the previously usd@tion value of any antinormally ordered operator to be rear-
methods. ranged as a completely normally ordered form. Hence, fol-

lowing a similar coherent-state expansion procedure to that
the previous subsection, we arrive at an expression analo-
gous to the kernel trace, E(B.2):

The trace of a generalized Gaussian is needed to normal-

A. Gaussian trace

ize_ the density matrix. The trace is most readily calculated by Tr E lA}i(éT);’l]i(é) j P(X)O(X)QdX
using a well-known coherent-state identi&y] (B)= i 3
- . d?Mz Trlp] j > O d%
Tr[A]=f (Z|Alz) —-. (3.1 P(M)QdA
aw
: : . =(O(\))p. (3.9
Here we defing=(z,, ... ,zy). Next, introducing extended

vectorsgz(z,z*)T, Z*:(z*,z), dz=z—a, and using the Here we have introduced an equivalence between the quan-
eigenvalue property of coherent statakz)=z|z), we find  tum expectation valu¢O) and the weighted probabilistic
that average O(X\))p . This is anantinormallyorderedc-number

o B operator equivalence in phase spac@()f)~©, where the
Qf d*"zexd —6z" o ~62/2] eigenvalue relations of coherent states are utilized to obtain

(3.2
m\lgl J d?Mzo(z)exy] — 62" o 162/2]

The normalizing factor can now be recognized as the deter- O(N)= N =(0(2))x-
minant expression arising in a classical Gaussian. For ex- = 3.7
ample, in the single-mode case, one obtains for the normal- '
izing determinant that Here(o(2))y represents thelassicalGaussian average of
1 1 the c-number functiono(z). In other words, all quantum
— ' (3.3 averages are now obtained by a convolution of a classical
Vgl VJ(d+n)2—mm* Gaussian average with a widdh), that depends on the kernel
- o parameter)z , together with a probabilistic average ovey
We can thus calculate the value of the normalization fromyith a width o that depends on the phase-space distribution
standard Gaussian integrals, as detailed in Appendix B, prcb():) The situation is depicted schematically in Fig. 1
vided o has eigenvalues with a positive real part. The result e . A C
; Z g P P Consider the first-order moment whe@=a, . This is

TH{A]=

'S straightforward, a®(z)=z,, and the Gaussiaﬁ average of
Tr[[\]zﬂ. (3.9 0(2) is simply the Gaussian mean), :
(a)=a,=(a,)p. (3.9

Thus for A itself to correspond to a normalized density

matrix, we must havél=1. In a general expansion of &  More generally, to calculate the antinormally ordered mo-

density matrix, there may be terms which do not have thism A A A -
T ; ) . ento(a)={a, a, ---a, }, one must calculate the corre-
normalization, with the proviso the average weight still be (@={ K17 k2 f‘n}

(Q)=1. This freedom of having different weights on differ- sponding' Gaus;ian momen(z) =2,,2,,, - -2, . Thi? is
ent members of the ensemble provides a way of introducinghost easily achieved by use of the moment-generating func-
gauge variables, which can be used to improve the efficienctjon for the Gaussian distribution in E(B.7), which is

of the stochastic sampling but which do not affect the aver- LTyttt gt 59
age result. The weight also allows calculations to be per- Xa(LN)=es 75 255, :
formed in which the trace of the density matrix is not Pre-here t=(tys o ot ’,\‘,|)=(t,t*T). General mo.

served, as in canonical-ensemble calculations. ments of the Gaussian distribution are then given by

B. Expectation values "

Given a density matrix expanded in Gaussian operators, it - atﬂl‘nuz' ot -
n

is essential to be able to calculate operator expectation val-
ues. This can be achieved most readily if the operétds  where it must be remembered that the adjoint vettds not
written in antinormally ordered form, as independent oft. We note that averaging the moment-

=0
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generating function over the distributidi'()f) gives the an- TABLE |. Cllassifilcation of commonly used single-mode opera-
tinormal quantum characteristic function of the density Op_E)or representatlons in terms of parameters of the general Gaussian
erator: asis.

A sk oo - * * - i + i
XA(L1) =Tr{pe” % = f P(V)Qet"ert” zuzgy  Representation e oMM
(317  Wigner(W) [4] 1 a a* -3 0 0
Husimi (Q) [5] 1 a o — 0 O
This equation is an alternative way @GMmplicitly) defining  Glauber-Sudarsha(P) [6] 1 a o 0 0 O
the GaussiarP distribution as a function whose generalized s-ordered[7,8] 1 a of (s—1)/)2 0 ©
Fourier transform is equal to the quantum characteristiGqueezed7,9] 1 « o n(m) m m
function. . . Drummond-Gardiner{P) [7] 1 a aF 0 0 O
As an example of a moment calculation, one obtains thesiochastic gaugk8,19 Q a at 0 0 0
c-number operator equivalence for generafmally ordered
guadratic term as
(aaln=(a,af+al e, (3.12 (F00)=(¥i(X))p,
where we have introduced the normally ordered covariance (W)Y =W (x)p,
oN=0—1. 3.1 - -
= = = 313 (Wi(x)Wj(y)) =(Wi(x)W;(y) +mj(X,y))p,
Writing these out in more detail, we obtain the following s N N
central results for calculating normally ordered observables CHO)W(y)) =(Wi) 7 (y)+n;(XY))e,
up to quadratic order: S b N N 4
- (W)W (y)=(¥{ ()P () +mij(X,y))p-
(a)=(ai)p (3.15
<é?>=<aﬁ>p These results show that in the field formulation of the Gauss-

ian representation, the phase-space quantitig,y) and
m;;(X,y) correspond to single-time Greens functions, analo-
<:éia;r:>:<aiar+nij>P gglL(jjSS to those found in the propagator theory of quantum

<é-ié-j>:<a’iaj+mij>P

<érér>= (aff ar + m§>p .
(3.19 D. Comparisons with other methods

Comparing these equations with the schematic diagram in It is useful at this stage to compare these operator corre-
Fig. 1, we see that, as expected from a convolution, the ovesPondences with the most commonly used previously known
all variance of any quantity is the sum of the variances of thd€Presentations, as shown in Table I. For simplicity, this table
two convolved distributions: that isy=o,+op. The re- ONly gives a single-mode comparison.
sults also support our interpretation given in Sec. Il B that !N greater detail, we notice the following.
andm are, respectively, the normal and anomalous correla- () If 0,,=8,,, these results correspond to the standard
tions that appear in many-body theory—except for the addiones for the normally ordered_posnnFé*epreserltatlon.
tional feature that we can now allow for distributions over (i) If we consider the Hermitian case af =a™ as well,
these correlations. The expressions in Ehaverages on the but with o,,,=(n—1)6,,, wheren=(s—1)/2, we obtain
right-hand side are not complex conjugate for Hermitian-the “s-ordered” representation correspondences of Cabhill

conjugate operators, because the kelﬁn@f) is generically and Glauber.

not Hermitian. Of course, after averaging over the entire dis-Gl;t'getﬁsejga:gcr:;ge}easr:é):ﬁ::iggi(e_sb;hear;%rrphilysOrr:_ered
tribution, one must recover a Hermitian density matrix, and . P . TR y
metrically ordered representation of Wigner={ —1/2).

hence the final expectation values of annihilation and cre- (iv) The antinarmally ordered Husing) function is recov-
ation operators will be complex conjugate. Using the charac- y

teristic function, one can extend these to higher-order mo(_ere(d)e}s :ﬂe S|ngular(;|m{it—>l—)1._ th i
ments via the standard Gaussian factorizations in which odd "/ 'N th€ squeezed-state basis, the parameiereare no

moments of fluctuations vanish, and even moments of ﬂuc!_ndependent, as indicated in the table. The particle number

tuations are expressed as the sum over all possible distingf’l functionn(|ml) of the squeezingn. The exact relation-

pairwise correlations. Ip IS given Iz_;\ter. . . .
The Gaussian family of representations is much larger

than the traditional phase-space variety, because we can al-
low other values of theo,, variance—for example,

The results obtained above can be applied directly to obsqueezed or thermal state bases. For thermal states, the vari-
taining the corresponding expectation values of normally orance corresponds to a Hermitian, positive-definite density
dered field operators: matrix if n;; is Hermitian and positive definite, in which case

C. Quantum field expectation values
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n;; behaves analogously to the Green’s function in a bosonic A e
field theory. In this case, a unitary transformation of the op- {O:A:}=2 Uy(a):Amvy(@h), (4.2
erators can always be used to diagonaligg so thatn; '
=n;5;; . S . .
(Ivil)J For a general Gaussian basis, Gaussian operators th\ﬂp'Ch indicates an operator product WP ich antlnormal_ly or-
do not themselves satisfy density matrix requirements ar€ers all terms except the normal term:: The Gaussian
permitted as part of the basis—provided the distribution hakernel A is always normally ordered, and hence we can omit
a finite width to compensate for this. This is precisely whatthe explicit normal-ordering notation, without ambiguity, for
happens, for example, with the well-know@ function, the kernel itself.
which always has a positive variance to compensate for the |n  this section, for brevity, we use d/dx
lack of fluctuations in the corresponding basis, which is Her-= (/90 8/ 9a, 9l 9™ , 31 9n, 9/ 9m,9/ dm™) to symbolize ei-

mitian but not positive definite. ther d/dx; or —idlay; for each of theé =0, ... p complex

__ Distributions over the variance are also possible. It is th§ , japiesy . This is possible sinc&(X) is an analytic func-
introduction of distributions over the variance that represents,

the most drastic change from the older distribution methodslon ©f X, and an explicit choice of derivative can be made

It means that there many new operator correspondences %ter. We first note a trivial identity, which is nevertheless
use. Thus, the covariance itself can be introduced as a dyiSeful in obtaining stochastic gauge equivalences between

namical variable in phase space, which can change and flu he different possible forms of time-evolution equations:
tuate with time. In this respect, the present methods have a

similarity with the Kohn variational technique, which uses a O—A=A. 4.3
density in coordinate space, and has been suggested in the Q)

context of BEC[24]. Related variational methods using

squeezed states have also been utilized for BEC problems A. Normally ordered identities

[29]. By comparison, the present methods do not require

either the local density approximation or variational approxi- 1€ normally ordered operator product identities can be
mations. calculated simply by taking a derivative of the Gaussian op-

erator with respect to the amplitude and variance parameters.

IV. GAUSSIAN DIFFERENTIAL IDENTITIES 1. Linear products

~ An important application of phase-space representations The result for linear operator products follows directly
is to simulate canonical ensembles and quantum dynamics iom differentiation with respect to the coherent amplitude,

a phase space. An essential step in this process is to map thgting that each amplitude appears twice in the exponent:
master equation of a quantum density operator onto a Liou-

ville equation for the probability distributioR. The real or 9 . g QO . .
imaginary time evolution of a quantum system depends on A= — :exq—éng’lb‘g/Z]:
the action of Hamiltonian operators on the density matrix. da, da, |g| -

Thus it is useful to have identities that describe the action of

any quadratic bosonic form as derivatives on elements of the

Gaussian basis. These derivatives can, by integration by

parts, be applied to the distributid®, provided boundary It follows that

terms vanish. The resultant Liouville equation fér is

equivalent to the original master equation, given certain re- )

strictions on the radial growth of the distribution. When the "G

Liouville equation has derivatives of only second order or

less(and thus is in the form of a Fokker-Planck equatjon

is possible to obtain an equivalent stochastic differential

equation which can be efficiently simulated. Differentiating a determinant results in a transposed in-
In general, there are many ways to obtain these identitiesjerse, a result that follows from the standard cofactor expan-

but we are interested in identities which result in first-ordersion of determinants:

derivatives, where possible. Just as for expectation values,

this can be achieved most readily if the opera@ois written ﬁlgl

in factorized form, as in Eq.3.5). do
In this notation, normal ordering means

=[o"1],,:8a,A:. (4.4)

= aM+0'M—+]/A\. (4.5

2. Quadratic products

= a;j|g|. (4.6)

v

Similarly, for the normalization factor that occurs in Gauss-
ian operators,

:0A:=2) vi(@HAu(a). (4.1)
I
Aol 1
. o . — = 50ula (4.7
We also need a notation for partial antinormal ordering: J0,, -
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Hence, on differentjating with respect to the inverse covari- {5(,;1#5&1:&}:{55#{ 5&1:&}}
ance, we can obtain the following identity for any normal-
ized Gaussian operator: ={sa,[5,,~0,, 1:salA:}. (412
J . g QO . ~ Next, the result above for one antinormal operator is used:
—A=—— exg —sa'- o1 sal2]:
(90-11# é’o-vp, |g| - = - ~ ~Ata -1
L - {6aM63V:A:}=[5Vp—apV CupT2(0 0= 640)
=50 sa,salA:. (4.9 21
XO'ﬁp aa_Ba A

Using the chain rule to transform the derivative, it follows

that a normally ordered quadratic product has the following N NN 9 e
identity: Ot ZU’U'QO-BV_ﬂUBa A. (4.13
. A 0" . R . . .
35au5aIA i=| 0, 2——| A= (TMV+2(TM(I(TBV(9 A C. Identities in matrix form
Jo,, T ga The different possible quadratic orderings can be written
(4.9 in matrix form as
cAaatA. AAaT
B. Antinormally ordered identities 3 ath = aa'A: Aaa
The antinormally ordered operator product identities are - a'Ta'A a'TAa'
all obtained from the above results, on making use of the
algebraic reordering results in Appendix A. o aAa' aa'A
{a a'A}=| .. _. IO
1. Antinormal linear products T Aa'ma" {a'TAa"}

Antinormally ordered linear products can be transformed Ay
y p aa‘rA aAaT

directly to normally ordered products. Hence, from Appendix {é‘éTf\' _ (4.14
A and Eq.(4.5), we obtain == alTAal {a™:a"A:}]| '
o R o P With this notation, all of the operator identities can be
a,:A}=:[a,—o tsa,JA:=| a,+(o,,—5,)—|A written in a compact matrix form. The resulting set of differ-
© 2 nv I pv nv + p
Ja, ential identities can be used to map any possible linear or
quadratic operator acting on the kernklinto a first-order
= a +oN A, (4.10 differential operator acting on the kernel.

R et For this reason, the following identities are the central
result of this paper:

where we recall from Eq(3.13 that the normally ordered

. . . N= _ “ (9 ~
covariance is defined bg a-L A=0-ZA
Q)
2. Quadratic products with one antinormal operator
. . . . L ~ EYN
T.h|s calculation follows a similar pattern to the previous AR = At o ,
one: - -  =Jat
N s A A . . oA
{sa,:salA:}=:| da,+ —|dalA: {aA}=aA+oN—ro,
&aM - - = dat
=:[8,,+(58,,—0o,hsalsa,]A: . A
Lo (Oup=0ryp) 08,00, :0a0a'R:=gA+20- 0,

A. (4.1

N d
Oyt z‘fﬂa"ﬁ”_aaﬁa

A . aA
{sa:sa’A:}=agA+20N—o0,
3. Quadratic products with two antinormal operators o - = o=

We first expand this as the iterated result of two reorder- o A IA
ings, then apply the result for a linear antinormal product to {sasa’A}=oNA+20N—oN. (4.15
the innermost set of brackets: - = = dg=
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D. Identities for quantum field operators

The operator mappings can also be succinctly written in

i:(i ( d )T) the field-theoretic notation as

da \da’ + ' .

a Ja A A A JA

:\If(x)A:z\If(x)A+f d3x’ o (X, X" )———,

p) aloa” ) - - = Jv " (x')

sat \(dlia)T)’ 2A
- {\if(x)fX}=\If(x)fX+J a3’ oN(x, X ),
( J 9 - - = JVF(X)
R (4.16
&g do,,

wv

It should be noted that the matrix and vector derivatives
involve taking the transpose. We note here that for notational
convenience, the derivatives with respect to hge, are for-
mal derivatives, calculated as if each of g, were inde-
pendent of the others. With a symmetry constraint, the actual

derivatives ofA with respect to any elements of or any
off-diagonal elements ofn will differ from the formal de-
rivatives by a factor of two. Fortunately, because of the sum-
mation over all derivatives in the final Fokker-Planck equa-
tion, the final results are the same, regardless of whether or
not the symmetry otr, , is explicitly taken into account at
this stage.

The quadratic terms can also be written in a form without
the coherent offset terms in the operator products. This is
often useful, since while the original Hamiltonian or master
equation may not have an explicit coherent term, terms like
this can arise dynamically. The following result is obtained:

18P (x) @(x’)%:=g(x,x’)f\+2f f d*x"d*x" o(x,X")

aA
X—O'(XW,X,),
ag(X”,Xm)=

{89(x): @(x’)ﬁ\:}=g(x,x’)[\
+ zf f d3X”d3XmgN(X,X”)

A

—_(XH/,XI),
t?g(X”,Xm)_

{80(x) 8¥(x) A= aN(x,x")A

_’_zj f dSX//d?)XmEN(X,XH)

aA
X———oN(X" x"), (4.189

o oA oA A . d g
:a a'Ai=a—o+o— a*+(a a"+o)A+20—o0, da (X" X")=
- = - g: =(9a+ — — — = =ag= —
- N where the vector quantum fields and covariances are as de-
JA JA fined in Sec. Il C. The normal field correlation matrix is
{aa’A}=a—0c+o"—a"+(a a"+o)A aN(x,x")=a(x,x")— 1 8(x,x") and the functional derivatives
- —da= = gat— T = = have been defined as
aA
+2gN—g, LZLE g isk-x J ,
= dog= IWVis(x) VX dayis
M OA aA o . a . ]
{a aTA}=a—aN+aN—+a++(a a+—|—0-N)A —:_2 elsk.x_,
- = —da= = gat— - = = V(%) YV R dargs
aA
N__ N J 1 . ;o J
+2g o'?O'g : (4.17) —rzv 2 z g i(s'k-x—sk’-x') '
= 905 jrsr (X,X) kK IOk jskj's

One consequence of these identities is that the time evixgain we have the convention for matrix derivatives that

lution resulting from a quadratic Hamiltonian can always be
expressed as a simple first-order differential equation, which
therefore corresponds to a deterministic trajectory. This rela-
tionship will be explored in later sections: it is quite different
to the result of a path integral, which gives a sum over many
fluctuating paths for a quadratic Hamiltonian. Similarly, the
time evolution for cubic and quartic Hamiltonians can al-

- d

ao'jrsr‘js(x,xl) .

_ 7
ag(x,x’)

js.j’s’

V. EXAMPLES OF GAUSSIAN OPERATORS

ways be expressed as a second-order differential equation, This section focuses on specific examples of Gaussian
which corresponds to a stochastic trajectory. operators and relates them to physically useful pure states or
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density matrices. We begin by defining the class of Gaussian TABLE Il. Parameters of single-mode Gaussian density matri-
operators that correspond to physical density matrices, beses of bosons.
fore looking at examples of specific types of states that caf

be represented, such as coherent, squeezed, and thermal Plysical state Q a o n m m
each of these _specmc cases, the conver_monal parametrization. , . state 1 0 0 0 0 0
can be analytically continued to describe a non-Hermltlarb "

. o . oherent state 1l o «a 0 0 0
basis for a positive representation. We show how these bas
. . . ermal 1 0 0 n=0 0 0
include and extend those of previously defined representas: ueezed vacuum 1 o 0 n(ml) mo o
tions and calculate the normalization rules and identities thgzq d coherent 1 . o
apply in the simpler cases. queezed coneren a o« n(jmp) — m

Squeezed thermal 1l a a n=n(m) m
A. Gaussian density matrices
A Gaussian operator can itself correspond to a physicariere

density matrix, in which case the corresponding distribution
i i is i i i i L — 1 - — A
is a é function. This is the simplest possible representation of Ag(n)= - exp(— AT 14 n]4): )

a physical state. Gaussian states or physical density matrices |1+ n|

are required to satisfy the usual constraints necessary for any

density matrix: they must be Hermitian and positive definite.is a thermal density matrix completely characterized by its
From the moment results of E¢3.14, the requirement of  mber expectatiom=Tr[:aa": A,;,(n)], wheren must be
Hermiticity generates the following immediate restrictions yermitian for the operator to correspond to a physical den-

on the displacement and covariance parameters: sity matrix. We show the equivalence of this expression to
o= at the more standard canonical Bose-Einstein form in the next
' section.
t_ The unitary displacement and squeezing operators are as
n'=n, ; . .
usually defined in the literature:
Tt o~
m=m". 5.1 A _
. D(a) =g 22" (5.6)
In addition, there are requirements due to positive defi—and
niteness. To understand these, we first note that whéen
Hermitian, as it must be for a density matrix, it is diagonal- As(g):e_;gy,2+;‘§*é,2, 5.7

izable via a unitary transformation on the mode operators.

Therefore, with no loss of generality, we can consider th‘?Nhere the vectow is, as before, the coherent displacements

case of diagonah—i.e., n;=nyd; . The positive definite- ¢ oo mode. The symmetric matgxgives the angle and
ness oflthe numbelr opc(iarator then_m(.eans ELLL numb(aregree of squeezing for each mode, as well as the squeezing
eigenvalues are real and non-negative: correlations between each pair of modes.

(5.2) In Table Il, we give a comparison of the Gaussian param-

eters found in the usual classifications of physical density
In the diagonal thermal density matrix case, but withmatrices of bosons, for a single-mode case.

squeezed correlations as well, satisfying the density matrix

requirements means that there are additional restrictions B. Thermal operators

[30]. Consideration of the positivity of products lik& X} 1. Physical states

K= 19 al i . . ) . .
whereXy;=uay+va; means that one must also safisty the s - ventional to write the bosonic thermal density

. . 2 . . .
inequalities ni(1+n;)=|mygl* This implies a necessary operator for a noninteracting Bose gas in grand canonical
lower bound on the photon number in each mode: form as[31]

n=n(|mgd) = Vimgl?+ 1/4—1/2. (5.3

Examples of Gaussians of this type are readily obtained
by first generating a thermal density matrix, then applying )
unitary squeezing and/or coherent displacement operation¥Neré#x= €x/kT. Here the modes are chosen, with no loss
which preserve the positive definite nature of the originaIOf generality, to diagonalize the free Hamiltonian with mode
thermal state. This produces a pure state if and only if th&nergiesei, and for the case of massive bosons we have
starting point is a zero-temperature thermal state or vacuufficluded the chemical potential in the definition of the en-
state. Hence, the general physical density matrix can be wri€9Y ©rigin. To show how this form is related to the normally

n,=0.

Pl )= 1;[ [1-e *Jexd — pajad, (5.9

ten in factorized form as ordered thermil Gaussiazfﬂth(n_) of Eq. (5.5, we simply
L R note that sincen is Hermitian, it can be diagonalized by a
A, =D(a@)S(§) An(n)S(—ED(—a). (5.4 unitary transformation. The resulting diagonal form in either
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expression is therefore diagonal in a number state basisand | 1 (2= L ) S

is uniquely defined by its number state expectation value. p=o5—| [1-e 21 rexp no(r +i ) JAw(n)dy.
Clearly, one has for the usual canonical density matrix 0

that (5.19

Taking matrix elements in a number-state basis gives

<n|2)m|n>=1'k[[1—e-¢k]exq—¢knk], (5.9

, (27 .
nn _ _
<n|p||’l >_ ’77,[0 € (o nO)dl//: 5nn'5nno-

while it is straightforward to show that the corresponding (5.19

normally ordered expression is a binomial: , . )
This effectively Fourier transforms the thermal operator

nk on a circle of radiugn,| around the origin, thereby generat-
(5.10 ing a pure number state with boson number equahgo
Thus, extended thermal bases of this type are certainly able
to represent non-Gaussian states like pure number states.
As one would expect, these expressions are identical prdJevertheless, they cannot represent coherences between
vided one chooses the standard Bose-Einstein result for tHgates of different total boson number.
thermal occupation as

1—

(lAnmm =11 (1407

Ny

3. Thermal operator identities

_ 1 The operator identities for the thermal operators are a sub-

(5.1)  set of the ones obtained previously. There are no useful iden-
tities that map single operators into a differential form; nor
are there any for products Ill@a However, all quadratic

These results also show that when 0 one has a vacuum products that involve both annihilation and creation opera-

state, corresponding to a bosonic ground state at zero tenfors have operator identities.

perature. In summary, the normally ordered thermal Gauss- With this notation, and taking into account the fact that

lan state is completely equivalent to the usual canonicagjifferentiation with respect ta now explicitly preserves the

form. skew symmetry of the generalized variance, the operator

identities can be written

Cef—1’

2. Generalized thermal operators

A simple non-Hermitian extension of the thermal states A= Q—A
can be defined as an analytic continuation of the usual Bose- Q
Einstein density matrix for bosons in thermal equilibrium.
We define a normally ordered thermal Gaussigeratoras FONA A
having zero mean displacement and zero second- or fourth- raa’A:=(1+n)A+(1+ n)—-(1+n),
guadrant variance:

. apn . A
Q PO {aa’A:}=(1+n)A+n—(1+n),
||+n|:exml+n)” aja;]:. an

(5.12

A(Q,0,0,n,0,0)=

_ . _ {:éf\:é*}=(1+n)f\+(1+n)%n,
Such operators are an analytic continuation of previously an
defined thermal bases and are related to thermofield methods

[32]. imen o~ OA

As well as the usual Bose-Einstein thermal distribution, {aa’A}=nA+ n—on. (5.16
the extended thermal basis can represent a variety of other

physical states. As an example, consider the general matrix

elements of an analytically continued single-mode thermal C. Coherent projectors

Gaussian operator in a number-state basis, with1h 1. Physical states

=ex =exd(r+iy)]. Th r . .
exi¢]=exi(r+iy)]. These are Next, we can include coherent displacements of a thermal

. — . Gaussian in the operator basis. This allows us to compare the
(n[Ag(m)|n")=(n|[1-e ?]exd — ¢n]|n") Gaussian representation with earlier methods using the sim-
_ A _ ; plest type of pure-state basis, which is the set of coherent
=om{1-e Jexd —n(r+iy)]. states. These have the property that the variance in position
(5.13  and momentum is fixed and always set to the minimal un-
certainty values that occur in the ground state of a harmonic
Now consider the following single-mode density matrix:  oscillator.
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In general, we consider adl-mode bosonic field. In an set of operator identities available and typically lead to
M-mode bosonic Hilbert space, the normalized coherenEokker-Planck equations of higher than second order—with
stateg a) are the eigenstates of annihilation operatorgith N0 stochastic equivalents—when employed to treat nonlinear
eigenvaluesr. The corresponding Gaussian density matriced-iouville equations.

are the Coherent pure_state projectors: Another W|de|y used Complete baSiS iS the Scaled
coherent-state projection operator used in the posRivep-
Ada)=|a)al, (5.17  resentatiorf17] and its stochastic gauge extensi¢h8:

which are the basis of the Glauber-SudarsRarepresenta- - |a)y( B |

tion. To compare this with the Gaussian notation, we rewrite Ap(Q, @, f)=0 (B*|a) ' (5.2

the projector using displacement operators as
R - P Here we have introducef* as a vector amplitude for the
Ad(@)=e*"“|0)(0[e” 2" If", (5.18  coherent statgB*), in a similar notation to that used previ-

ously.
Since the vacuum state is an example of a thermal Gaussian T?]/is expansion has a complex amplitudeand a dynami-

and the other terms are all normally ordered by constructionyg| phase space which is of twice the usual classical dimen-
this is exactly the same as the Gaussian operatQfion The extra dimensions are necessary if we wish to in-
A(l,a,a*,0,0,0). In other words, if we restrict the Gaussian clude superpositions of coherent states, which give rise to
representation to this particular subspace, it is identical to theff-diagonal matrix elements in a coherent state expansion.
Glauber-Sudarshar representation[6]. This pioneering To compare this with the Gaussian notation, the projector is
technique was very useful in laser physics, as it directly correwritten using displacement operators as

responds to easily measured normally ordered products. It A A

has the drawback that it is not a complete basis, unless the[\P(Q,a,ﬁ):QeaT'ﬂ 0)(0lef @ Fe=A(Q,a,B,0,0,0).

set of distributions is allowed to include generalized func- (5.22
tions that are not positive definite.

Other examples of physical states of this type are the dis- This follows since the vacuum state is an example of a
placed thermal density operators. These physically correthermal Gaussian, and the other terms are all normally or-
spond to an ideal coherently generated bosonic mode from @ered by construction. From earlier wofk7], it is known
laser or atom laser source, together with a thermal backthat any Hermitian density matrig can be expanded with

ground. They can be written as positive probability in the overcomplete basls, and it

follows that the same is true fok(\).

The effects of the annihilation and creation operators on
the projectors are obtained using the results for the actions of
operators on the coherent states, giving

R(an=A(La,a* 0,00 =" {;(njee" 2" e,
(5.19

2. Generalized coherent projectors

There are two ways to generalize the coherent projectors [\:Qif\
into operators that are not density matrices: either by altering F)
the thermal boson number so it does not correspond to a
physical state or by changing the displacements so they are aA=al
not complex conjugate to each other.

The first procedure is the most time-honored one, since it ~pa
is the route by which one can generate the classical phase- aA=

space representations that correspond to different operator

7 1A
ﬁ+£

orderings. The Wign€4], Q-function[5], ands-ordered[7] . a1,
bases are very similar to Gaussian density matrices, except Aa=| a+ B A
with negative mean boson numbers:
N R Anp o4
Aw(@)=A(La,a*,—1/20,0), Aa’=pA. (5.23
R - . Note that here one has"=0, and thus all the antinor-
Ao(@)=A(Le,@,—1,0,0), mally ordered identities have just coherent amplitudes with-
. . out derivatives, in agreement with the general identities ob-
Af(@)=A(la,a*,1(s—1)/20,0). (5.20  tained in the previous section. In treating nonlinear time

evolution, this has the advantage that some fourth-order non-
As pointed out in the previous subsection, it is also possiblg¢inear Hamiltonian evolution can be treated with only
to choosen to be non-Hermitian, which would allow one to second-order derivatives, which means that stochastic equa-
obtain representations of coherently displaced number statesons can be used. In a similar way, one can treat sthué
However, there is a problem with this class of non-normallynot all) quadratic Hamiltonians using deterministic evolution
ordered representations. Generically, they have a restrictezhly. The fact that all derivatives are analytic—which is pos-
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sible sinceB+ a* —is an essential feature in obtaining sto- Comparing these moments to those of the general Gaussian
chastic equations for these general cd46%. state[Eq. (3.14)], we see that

D. Squeezing projectors

1. Physical states m=— uv,

The zero-temperature subset of the Gaussian density op- Y .
erators describe the set of minimum uncertainty states, which m"=-v" u. (5.29
in guantum optics are the familiar squeezed stf&3534.
These are most commonly defined as the result of a squee,
ing operator on a vacuum state, followed by a coherent dis-
placement:

he relationship between the different parametrizations can
e written in a compact form if we make the definitions

M -V
TR ()
Asf @.£0)=D(a)S(§)[0)(0|S(-§D(~a). (5.24 = o
The action of the multimode squeezing operator on annihila- 0 §
tion and creation operators is to produce “antisqueezed” op- £= & o) (5.30
erators
o A in terms of which the relations are
b=S(¢)aS'(§)= pa+va',
— 1 2 1
BT=8&aTs (H=praT+r*a (529 g= ol
where the Hermitian matriy(£) and the symmetric matrix u=exp—§&). (5.3
v(&) are defined as multimode generalizations of hyperbolic = =
functions[35,36]: One implication of this relation is that, just asis not inde-
1 1 pendent ofv, so toon is not independent ofm for the
=4+ g4+ 24 .. .= ’ squeezed state. From the hyperbolic relation, we see that
» 2!§§* 4! (£€7) cosh(| &) n"=m*(1+n) m. The determinant of the covariance ma-

trix, required for correct normalization, reduces to the sim-

1 1 sinh(| &) pler form
v=§+ ggfkg"' a(gfk)zf"' = T )
(5.2 |la|=1+n[=|ul? (5.3
Note thatu and » obey the hyperbolic relatiopu— vv* This set of diagonal squeezing projectors forms the basis

=1 and have the symmetry propertp v=(u '»)T that has prgviously been used to d(_afine squeez_ed—state based
—v*u 1 In the physics of Bose-Einstein condensats, representatlon@]. Because the basis efler'nen'ts in such bases
i . i N _ are not analytic and the resultant distribution not always
andb’ are just the Bogoliubov annihilation and creation op-ssitive, these previous representations suffer from the same
erators for quasiparticle excitations. _ deficiency as the Glauber-Sudarstarepresentatiofias op-
The Bogoliubov parameters provide a convenient way ofy,qeq to the positive representation i.e., the evolving

characterizing the minimum-uncertainty Gaussian oper_ator uantum state cannot always be sampled by stochastic meth-
We therefore need to relate them to the parameters in thgo

Gaussian covariance matrix. First consider the antinormal

density moment for a squeezed state: 2. Generalized squeezing operators

AAT\ T Aat A A non-Hermitian extension of the squeezed-state basis
(@) =Triaa Asf . £0)} [Eq. (5.24] can be formed by analytic continuation of its
:<0|‘5(_§)|5(_a)égﬂ@‘r(_a)g‘r(_g)m) parameters—i.e., by a replacement of the complex conju-
gates ofa and & by independent matrices* — o™ and &
=(0|(ma—rva'+ a)(a' u—arv* + a*)|0) —£&". In the Bogoliubov parametrization, this is equivalent

to the replacement* — »* and tou being no longer Her-
mitian. These non-Hermitian operators are in the form of
off-diagonal squeezing projectors and constitute the basis of
a positive-definite squeezed-state representation. They in-
clude as a special case+v" =0, u=1) the kernel of the
coherent-state positive-expansion. Thus the completeness
of the more general representation is guaranteed by the com-
(@Ta"y=a* Ta* —v* p. (5.28)  pleteness of the coherent-state subset, and we can always

=aa* + ppu. (5.27
Similarly, the anomalous moments are

(aa") = aa" — pv,
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find a positiveP function for any density operator by using F. Displaced thermal squeezing operators
the coherent-state-based representation. Finally, the most general Gaussian density matrix is ob-
tained as stated earlier, by coherent displacement of a
E. Thermal squeezing operators squeezed thermal state:

Mixed (or classical squeezed states are generated by ap-
plying the squeezing operators to the thermal kernel, rather
than to the vacuum projector:

Asf @ &En)=D(@)S(&Ap(MS(—HD(—a). (5.39

In this way, a pure or mixed Gaussian state of arbitrary lo-
A & AR (e cation as well as spread can be generated. In terms of the
Asf 0&M =S Aun(M)S(—&). (533 normally ordered Gaussian notation, the displacement and

In this way, a pure or mixed Gaussian state of arbitrarycovar'ance of this case are given by

spread can be generated.

Once again, we can relate the covariance parameters char- o=p|n+ E| w+ E| ,
acterizing the final state to the thermal and squeezing param- = == 2=/= 2=
eters by comparing the moments:
o
(aa'y=Tr{aa"As{0.£n)} a=| ) (5.40

= Tr{( 1) (3 i ) ()
{(pa—va)(@p=ar’) An(m} VI. TIME EVOLUTION

— (. ATk
=p(n+hptenivt, (5.39 The utility of the Gaussian representation arises when it is

. : : used to calculate real or imaginary time evolution of the
since there are no anomalous fluctuations in a thermal Stat@ensity matrix. To understand why it is useful to treat both

Similarly, the squeezing moments are types of evolution with the same representation, we recall
. _ _ that the quantum theory of experimental observations gener-
(aay=—p(n+v—rn' p*, ally requires three phases: state preparation, dynamical evo-

lution, and measurement. It is clearly advantageous to carry

<éTTé_T>: _M*n_TV* - (m—l)/u. (5.35 out all three parts of the calculation in the same representa-

tion, in order that the computed trajectories and probabilities
are compatible throughout. Many-body state preparation is
nontrivial and often involves coupling to a reservoir, which

may result in a canonical ensemble. This can be computed

Thus the two parametrizations are related by

I AT *
n=pnput+r(n +)r, using imaginary time evolution, as explained below. Dy-
. - namical evolution typically requires a real-time master equa-
m=— u(n+1)r—wrn' u*, tion, while the results of a measurement process are operator
expectation values, which were treated in Sec. IIl.
m* = —p*nT* —v* (n+ ), 5.3
® ( » (539 A. Operator Liouville equations
which can be written in a compact form as Either real or imaginary time evolution occurs via a Liou-
ville equation of generic form:
(_+ 1|) + 1| (5.37 d
o=u|ln+ < =, . - A
I E=" 22" 2= —PO=L), 6.0

where the thermal matrix is defined as . . .
where the Liouville superoperator typically involves pre- and

a0 post-multiplication ofp by annihilation and creation opera-
F:< ) (5.39 tors. There are many examples of this type of equation in

= physics(and, indeed, elsewheréVe will consider three ge-
neric types of equation here: imaginary-time equations used

As in the cases for the other bases, these squeezed thernif@l construct canonical ensembles, unitary evolution equa-
states can be analytically continued to form a non-Hermitiarffions in real time, and general nonunitary equations used to
basis for a positive-definite representation. Such a represefYolve open systems that are coupled to reservoirs. _
tation would be suited to Bose-condensed systems, which We often assume that, initially, the steady-state density
have a finite-temperaturéherma) character as well as a matrix is in a canonical or grand canonical ensemble of the
quantum(squeezed, or Bogoliubd\character. Furthermore, form
the lack of a coherent displacement is natural in atomic sys- A
tems, where superpositions of total number are unphysical. pu(r)=e ™" (6.2

0 n'
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where;)u(r) is unnormalizedz=#/kT, and we can include Where terms with derivatives of order higher than 2 do not

any chemical potential in the Hamiltonian without loss of @ppear, which implies a restriction on the nonlinear Hamil-
generality. If this is not known exactly, the ensemble cantonian structure.

always be calculated through an evolution equationr,in We next apply partial integration to E(6.6), which, pro-
whose initial condition is a known high-temperature en-Vided boundary terms vanish, leads to a Fokker-Planck equa-
semble. This equation can also be expressed as a masttéh for the distribution,

equation, though not in Lindblad form. The resulting equa-

tion in “imaginary time,” or 7, can be written using an an- 9 s -
ticommutator: St PLD=LyP(ND), (6.8
d ~ 1 .. where the differential operatdty has derivatives to the left:
h——pu==5[A.pu]s . 63
1
Here the initial condition is just the unit operator. Ly=U=0jAj+ 5319;Djj . ©.9

By comparison, the equation for purely unitary-time evo-
lution under a Hamiltoniamd is Such Fokker-Planck equations have equivalent path-integral
and stochastic forms, which can be treated with random sam-
J. .. pling methods.
ih—p=[H.p]. (6.4 For example, in the Hamiltonian case, if the original
HamiltonianH(a,a") is normally orderedannihilation op-

More generally, one can describe either the equilibratiorfrators to the right then for a positiveP representation one
of an ensemble or nonequilibrium behavior via a maste€an immediately obtain
equation representing the real-time dynamics of a physical
system. Equations for damping via coupling of a system to

its environment must satisfy restrictions to ensure fhag-
mains positive definite. In the Markovian limit, the resulting
form is known as the Lindblad fori87] With the use of additional identities i to eliminate the

potential termU, the Fokker-Planck equation can be sampled

ap i o o by stochastic Langevin equations for the phase-space vari-
—=——[A,p]+> (20xpOL—[p,0O].), ables. Note that this potential term only arises with
at B K imaginary-time evolution. The first-order derivativdrift)
(6.5 terms in the Fokker-Planck equation map to deterministic
. . _ . . terms in the Langevin equations, and the second-order de-
which consists of a commutator term involving the Hermit- i, ~4ive (diffusion) terms map to stochastic terms. To obtain
ian Hamiltonian operatoH, as well as damping terms in- stochastic equations, we follow the general stochastic gauge
volving an anticommutator of the arbitrary operat@rg. technique[18], which in turn is based on the positie-
method.

To simplify notation, we have left the precise form of the
) ) derivatives in the Fokker-Planck equation as yet unspecified.
~ While the general operator equations become exponerpifferent choices are possible because the Gaussian operator
tially complex for large numbers of particles and modes, thgg el is an analytic function of its parameters. The standard
use of phase-space mappings provides a useful tool for mappgice in the positive® method, obtained through the
ping these quantum equations of motion into a form that calyimension-doubling techniquil7], is such that when the
be treated numerically, via random sampling techniques. equation is written in terms of real and imaginary deriva-

Using the operator identities in E¢4.15), one can trans-  yiyes, all the coefficients are real and the diffusion is positive
form the operator equations in any of these three cases inQefinite. This ensures that stochastic sampling is always pos-

1
Ly=r7[Hn(@B—d,)—Hy(Ba—dp].  (6.10

B. Phase-space mappings

an integro-differential equation sible. Other choices are also possible and useful if analytic
- solutions are desired.
w:f PN, D[ LAA(N)]dPX, (6.6) . Thg structure of the .noise terms in_ thg stoc.hastic equa-
Jat tions is given by the noise matri®, which is defined as a

pXp' complex matrix square root:
where the differential operatat, is of the general form
D=BB". (6.1D
1

EA=U+A]'C7J'+ >

Dijdid;, (6.7 Since this is nonunique, one can introduce diffusion gauges

from a set of matrix transformationd] f(X)] with UUT=1.
with derivative operators to the right, amd =0, ... p for It is also possible to introduce arbitrary drift gauge temns
the case of g-parameter Gaussian. We only consider casesvhich are used to stabilize the resulting stochastic equations
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erator requires that the matrix Hermitian conjugate be equal
ar - MU+g-dul, to the generalized Hermitian conjugaté* T=A*, B*T

:§+, andg*T:9+. - - -

i By expandingf)_in the general Gaussian basis and apply-

—=A+B.[()—-g] (i,j>0). (6.12 ing the operator identities in E¢4.15, we obtain a Liouville

dt I ! equation for the phase-space distributidthat contains only
zeroth- and first-order derivatives. Since this can be treated

These are Ito stochastic equations with noise terms defingey the method of characteristics, the time evolution is deter-

by the correlations ministic: every initial value corresponds uniquely to a final
value, without diffusion or stochastic behavior. This can also
_ be solved analytically, since the time evolution resulting
(D )y=6(t—t") 5 . 6.1 . ' Lo . .
(D4 =0 ) .13 from a quadratic master equation is linear in the Gaussian
We note here that the use of stochastic equation Samp"n%arameters\.

as described here represents only one possible way to sample
the underlying Fokker-Planck equation. Other ways are pos-
sible, including the usual Metropolis and diffusion Monte ~ We consider this case in detail, even though it is relatively
Carlo methods found in imaginary-time many-body theory. straightforward, because it gives an example of phase-space
In the remainder of this section, we consider quadratic€volution which would require diffusive or stochastic equa-
Hamiltonians or master equations. We show that under th#ons using previous methods. The equation in “‘imaginary
Gaussian representation, these give rise to purely determiime,” or 7, can be written using an anticommutator. Since
istic or “drift” evolution. We first treat the thermal case, then we are only considering linear evolution here, the relevant
derive an analytic solution to the dynamics governed by dlamiltonian is always diagonalizable and can be written as
general master equation that is quadratic in annihilation and R o
creation operators. Following this are several examples H=%:a'wa:. (6.15
which show how the analytic solution can be applied to
physical problems. While these examples can all be treated Next, we need to cast the unnormalized density operator
in other ways, they demonstrate the technique, which will beequation
extended to higher-order problems subsequently.

1. Imaginary-time evolution

d

- 1 ..
_ _ h——pu=—5[H.pul+ (6.16
C. General quadratic master equations T

Any quadratic master equation can be treated exactly withnto differential form. All the terms are of mixed form, in-
the Gaussian distribution. To demonstrate thlS, we can Ca%quding both normal- and anti-normal-ordered partS, so the

any quadratic master equation into the form master equation can be written as
Jd A ~ ~ A A~ A N mgn
_ a(0) (1). . (1) el . 7. Jd ~ PN ~
&tp_A p+AM .aMp.+BM {aﬂ.p.}+A,,M.aMavp. anu:Tr[g{E:ETpu:}]+A(O)pua (6.17

+B,,{a,al:p:}+C,,fa,:alp:}, where
=AOp+ T A :ap:+ B a:p:}] 1l 0
22_5{0 o'

FTAG A Bl At} ClaAT]

(6.19 A= —Tr @. (6.18
where the trace is a matrix structural operatioicated by
the double underline not a trace over the operators. Here
A is a real number, whild®), andB™) are complex col-
umn vectors with the generalized Hermitian property of
A(l)*T:A(1)+, B(l)*T:B(1)+. ACA]\:
~ The quadratic termg\, B, and C are complex-number

matrices that have the implicit superscript (2) dropped for_ ) _ o
notational simplicity. By constructiond and B possess all Th|s Iea_ds to the foIIovv_mg equqnon fo_rthe dl_str_|but|on, after
the skew symmetries af: A=A andB=B*Ti.e. they are !n.tggrat_lon. by. partgwhich requires mild restrictions on the
Hermitian in the generalized sense defined earlier. The mdnitial distribution):
trix C possesses only some of these skew symmetries—

namely, that the upper right and lower left blocks are each £=2 w
symmetric. Furthermore, the Hermiticity of the density op- aT g

Using the identities in Eq(4.15, one finds the corre-
sponding differential operator to be

AOA+TrC . (619

J\ .
1+ a'N—) Ao
= Jdo =

nP. (6.20

J O+ J 1+
ETo) (9—nk( Nk)
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Solving first-order Fokker-Planck-like equations in this form
leads to the deterministic characteristic equations

0=

— Ek a)ank,

hk: - wknk(l-l— nk).

(6.2

Integrating the deterministic equation for the mode occu-
pationn, leads to the Bose-Einstein distribution also encoun-

tered in Eq.(5.11):

1

- ewk‘r_

1 (6.22

PHYSICAL REVIEW 88, 063822 (2003

Hermitian and negative definite, then the dynamics will con-
sist of some initial transients with a decay to the steady state:
a(®)=a®, g(x)=

The flrst- and second order physical moments also have a
simple analytic form

(@)t =eE(a)(0)~a% +a’,

eE'((:a a")(0)~F(0))eE "+ F(1),
= (6.27

where the steady state with coherent transients is given by

(:a ah)(h)=

F(=g’+ (@@= (6.28

For a quadratic master equation in Lindblad form, the

The weighting term occurs because this method of obtainingjamiltonian and damping operators can be expressed as
a thermal density matrix results in an unnormalized density

matrix with trace equal td)(7). From integration of the
above equation one finds, as expected from (B, that

T p]=Q(n)=Qo [1-e 7L (6.23

2. Real-time evolution

In the Lindblad form of a master equation which is rel-
evant to real-time evolution, further restrictions apply to its
structure than just the symmetries given above.

The preservation of the trace q}f in real-time master
equations requires thatt)= —B®), In addition, we require
that Tr B=—Tr(A+C)=A® and that the matrix sun
=A+ B+C is anti skew symmetricD *=—D. The result-
ant differential equation foP is simplified by the fact that
most of the symmetric terms from the identities are multi-
plied by the antisymmetriD and thus give a trace of zero. In
particular, the zeroth-order terms will sum to zero, leaving

aP
ot

- —(E a+A(1))+Tr—(ZB+E oc+o EY)|P,

(6.29

whereE=2A+C=—-2B—-C".

A Fokker-Planck equation such as this that contains only
first-order derivatives describes a drift of the distribution and
can be converted into equivalent deterministic equations for

the phase-space variables:

a=AL+E

IR

g=2B+

[Im

IIQ

(6.29

+o E'.

(6.29
where, in block form,

H(®)
iz( HOT

o[

O* — ( O(l)* 0(2)* ) )

H®)

H (2)% ) ’

o
2

o

(6.30

Thus the coefficients of density termaa’: appear inH®)

and the coefficients of squeezing teraes. appear inH®,
The commutator term and each of the damping terms will
provide a contribution to the matrices, B, andC, which

we can label respectively &, Ax, etc. The contributions
from the Hamiltonian term are thus

0 iH?)
éH:(—iH(Z)* 0 )
-2iH® 0
Ci=l o 1) (6.31

andBy=—Ay . With only the Hamiltonian(unitary) contri-
butions, the matan appearing in the general solution is

This system of linear ordinary differential equations hasanti-Hermitian.

the general solution
a(t)=eE(a(0)—a®) +a’,
a(t)=e= t(a(O) a 9)ek (6.26

0= —AM and the skew-symmetric
—2B. Note that ifE is

t+20,

Wherea satisfiesE o
matrix ¢ sat|sf|esE 0'0+ O'O_E+ =

In contrast, the contributions from the damping terms are

. ( (O&Z)OE(Z)* )T _ O(Kl)o(KZ)* )

_K_ 1

= —oPod*  oPo@*

=K1 _ 0&2)0&1)* (O(Kl)O(Kl)* )T .
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and Cy=—Ax—Bk. With only these damping contribu-
tions, the matrixE is Hermitian.

E. Dynamics of a Bose gas in a lossy trap

As a second example, we consider a trapped, noninteract-
ing Bose gas with loss modeled by an inhomogeneous cou-

D. Bogoliubov dynamics pling to a zero-temperature reservpd7|:

As an example of how the dynamics of a linear problem 5 1 o
can be solved exactly with these methods, consider the qua- Z:p= —i[w;ala;,p]+ Eyij(ZaipajT—ajTaip—pa;rai),
dratic Hamiltonian

(6.37
O
A=% >, —[Xijé;ré;r—xﬁ éiéj], where w is an Hermitian matrix that describes the mode
i7=12 couplings and frequencies of the isolated system,jaisdan
Hermitian matrix that describes the inhomogeneous atom
wherey is a complex symmetric matrix. In the single-mode loss. Recasting this in the general form, we find tA#
case, this Hamiltonian describes two-photon down-=Try, A=0, and

conversion from an undepletedlassical pump[38]. The

(6.33

full multimode model describes quasiparticle excitation in a 1[9" © P 0
BEC within the Bogoliubov approximatioh39]. Alterna- EZE 0 , C=—i ~ | (6.39
tively, it may be used to describe the dissociation of a large - Yl = 0 -w

molecular condensate into its constituent at¢4@§. Recast-

ing this system into the general master-equation f0E9.  where w=w—iy'/2. The block-diagonal form of these ma-
(6.14)], we find that the constant and linear terms vanishirices allows us to write the solution to the phase-space equa-

g:o, and

0 *
EZ—ZBZZAZ[ X

The general solutiohEg. (6.26)] can then be written

tions as

a(t)=e 1 a(0),

. (6.39

a’+(t): a+(0)ei:uTt'

n(t)=e"“n(0)e'",

sin t
cost (|x[t) x* —T||X| ) = =
X m(t)=e '“'m(0)e"'“",
LU= sint vl O e
— cosh| x|t ~ ~
X lxio m*(t)=€“ tm*(0)ei®". (6.39
sinh(| x|t) If ¥ is positive definite and commutes with, then the dy-
cost (|x|t) x* T 1 namics will be transient, and all these moments will decay to
t)= ) 0)— —| Zero.
ZOZ| sinnxt (g : 2=)
cosh|x|t) _ -
|X| F. Parametric amplifier
. sinh(| x|t) A single-mode example that includes features of the pre-
cosft (|x|t) T | o1 vious two systems is a parametric amplifier consisting of a
. + =1, (6.39 single cavity mode parametrically pumpéat rate xy) via
sinh(| x|t) costi|x|t) 2= down-conversion of a classical input field and subject to one-
BY photon losgat ratey) [41]:

where the matrix cosh and sin.h functions are as defined inﬁ;,: E[XéTéT—X* aa,p]+ Ey(za;éf_a‘ra;,_f,é‘ra)_
Eq. (5.26). If the system starts in the vacuum, for example, 9t 2 2

then the first-order moments will remain zero, whereas the (6.40
second-order moments will grow as . . .
This corresponds to phase-space equations with
- 1 1 N N
<:aaT:>=§cosH‘(2|X|t)—§I, 1|0 x B_l Y X oY 1 0
= 2|y 0= 2|-x v |'= 2[0 1]
, 6.41)
~n 1 sinh(2|x|t (
<aaT>: _X* M (6.36)

2 | x|

giving the solutions, for reay,
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We have derived the identities which are essential for
«(0), first-principles calculations of the time evolution of quantum
systems, both dynamicdteal time and canonicalimagi-
nary time. Any quadratic master equation has an exact so-
lution than can be written down immediately from the gen-
(g(o)—go) eral form that we have derived. Higher-order problems with
nonlinear time evolution can be solved by use of stochastic
sampling methods, since we have shown that all Hamilto-
nians up to quartic order can be transformed into a second-
order Fokker-Planck equation, provided a suitable gauge is
chosen that eliminates all boundary terms. Because the
Gaussian basis is analytic, methods previously used for the
' (6.42 stochastic gauge positiie-representation are therefore ap-
plicable for the development of a positive semidefinite diffu-
sion and corresponding stochastic equatiphg,18 here.
which are valid fory+2y. For y>2y, the system reaches The ability to potentially transforrall possible Hamiltonians
the steady stater=0, g:gO_i_e_, <5\T5\>0=n0=2X2/(72 of quartic order into stochastic equations did not exist in
A2 APND 0= T (a2 A2 previous representations.

Ltl)\(/h)ilg r:gigsa?gsulms V\i(ejllll(kjr;ow‘rtxaz{d can be obtained in _ HOWever, we can point already to a clear advantage to the
other wayg41,42, it is important to understand the signifi- Présent method in terms of deterministic evolution. For ex-
cance of the result in terms of phase-space distributions. IATP!€. the initial condition and complete time evolution of
all previous approaches to this problem using phase-spaciiner @ squeezed statinear evolution in real timeor a
techniques, the dynamically changing variances meant thif€ma! state(linear evolution in imaginary time with a
all distributions would necessarily have a finite width angduadratic master equation, are totally deterministic with the
thus a finite sampling error. However, the Gaussian phasd2€Sent method. By comparison, any previously used tech-
space representation is able to handle all the linear terms fiidué would result in stochastic equations or stochastic ini-
the master equation simply by adjusting the variance of thdial .cond_l'uo.ns, with a finite sampling error, in either case.
basis set. This implies that there is no sampling error in a/hile this is not an issue when treating problems with a
numerical simulation of this problem. Sampling error canX10Wn analytic solution, it means that in more demanding
only occur if there are nonlinear terms in the master equaproblems it is possible to develop simulation techniques in

tion. These issues relating to nonlinear evolution will beWhich the quadratic terms qnly give risg to d_eterministic
treated in a subsequent publication. rather than random contributions to the simulation, thus re-

moving the corresponding sampling errors.
Finally, we note that the generality of the Gaussian for-
VII. CONCLUSION malism opens up the possibility of extending these represen-

) ) tations to fermionic systems.
The operator representations introduced here represent the

largest class of bosonic representations that can be con-

structed using an operator basis that is Gaussian in the el-

ementary annihilation and creation operators. In this sense,

they give an appropriate generalization to the phase-space We gratefully acknowledge useful discussions with K. V.

methods that started with the Wigner representation. Thergheruntsyan and M. J. Davis. Funding for this research was

are a number of advantages inherent in this enlarged classprovided by an Australian Research Council Center of Ex-
Since the basis set is now very adaptable, it allows a&ellence grant.

closer match between the physical density matrix and appro-

priately chosen members of the basis. This implies that it

should generally be feasible to have a relatively much nar- APPENDIX A: BOSONIC IDENTITIES

rower distribution over the basis set for any given density

matrix. Thus, there can be great practical advantages in using To obtain the operator identities required to treat the time

this type of basis for computer simulations. Sampling error2volution of a general Gaussian operator, we need a set of

typically scale as /T for an ensemble oT trajectories, so theorems and results about operator commutators. These can

reducing the sampling error gives potentially a quadratic imthen be used to obtain the result of the action of any given

provement in the simulation time through reduction in thequadratic operator on any Gaussian operator, as described in

ensemble size. As many-body simulations are extremelyh€ main text. We use the following bosonic identities which

computer intensive, both in real and imaginary time, thisar® known in the literature, but reproduced here for ease of

could provide substantial improvements. Given the currentlyeference

projected limitations on computer hardware performance, Commutation Theorem(l): Given an analytic function

improvement through basis refinement may prove essentigd(a) with a power series expansion valid everywhere, the

in practical simulations. following commutation rules hold:

()= 72 coshyt sinhyt
a =

sinhyt coshyt

— coshyt sinhyt
Z sinhyt coshyt

coshyt sinhyt o2 40

x| .
sinhyt coshyt

Y’=2x*  xv
Xy  v—2x°
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L () Corollary. The antinormal combination of a Gaussian op-
[p(a),aiT]Z = eratorf\g(é) and any single creation or annihilation operator
94 is given by a direct application of the ordering theorem, Eq.
) (A3):
2, plah- 22 (A1) Ry (3):a,}= 1[4 2 ]A4(5
[ai,p(a)]=—=— (Ag(8):a,0=1[a,~0,168,]A,):. (A6

) . . - It should be noticed here that the above expression as-
Pr.oc-)f. .UsAmg a Taylor series expansion p{a) around the  gymes the covariance has the usual symmetry: then every
origin in a;, one can evaluate the commutator of each termpperator occurs twice in the Gaussian quadratic term, which

in the power series. Hence, cancels the factor of two in the exponent.
In the main text, these results are used directly to obtain
[p(3).31] 2 n"n > Pn e ap(a) all the required operator identities on the Gaussian operators.
AT e oa;
(A2) APPENDIX B: GAUSSIAN INTEGRALS

_ . . In deriving the normalization, moments, and operator
The second result follows by taking the Hermitian conju-jgentities of the Gaussian representations, we have had to
gate. ) ) calculate nonstandard integrals of complex, multidimen-
Ordering Theorem(ll): Given any analytic normally or-  gjona1 Gaussian functions. The basic Gaussian integral that
dered operator functiop(a’,a) with a power series expan- must be evaluated is of the form
sion, the following ordering rules hold:

n = J d2Mze~ o' o2 (B
9 )
p@@"a)(a)"=|al+ —| p(a.a),
&a' where, as in Eq(3.2), the covariancer is a 2M X 2M non-
1N Hermitian matrix, andsz and 6z are complex vectors of
T e R4 length 2V. There are two major differences between this
(a)"p(a,a)=p(@.a) a+ = (A3)  expression and the better known form of the Gaussian inte-
1

gral. First, the vector$z=z—« and 52" =z* —a™ contain

Here the left arrow of the differential operator indicates the()ﬁsetS which are not complex conjugate* #a”. Second,

direction of differentiation. We can write these two identitiesthe \l/)ectorzR dt(;]es ntot cotnsrliz[ of dm mddepeindent Icomplex
in a unified form by introducing an antinormal ordermg be umbers. Rather, it contaird independent complex num-

ersz and their conjugates*.
bracket, denoted: p:a}, which places all operators in anti- 1 ayajuate such an integral, we first write it explicitly in

normal order relative to the normal term:: With this no-  terms of real variables as
tation, we can write a single ordering rule for all cases:

|:f dZMzeféfg‘l&z/Z:f d2Mye~ "Xz Hx—x0)/2

{:p(a):a,}=:a,+ —=¢|p(a):. (A4) (B2)
"
A where x=L z=(Rez, mz), Xo=L a=((ata")2,(a
Proof. Sincea; commutes with all other annihilation op- —a")/2i), and7=L o L, with the transformation matrix

erators ancfafr commutes with creation operators, theorgm
also holds for any normally ordered operapﬁéﬁé), with a L= 1( I _I ) _ (B3)
power series expansion, provided derivatives are interpreted = 2

as normally ordered also. The first case above then follows
directly from theorenl): Note that the offset vectax, will be complex, unlessx*

. We may remove it by changing variables=x— Xo
and using contour integration methods to convert the integral
p(a’,a). (A5)  back into an integral on a real manifold.
With the offset removed, the square of the integral can be
written in the form of a standard multidimensional Gaussian:
The required result then follows by using the equation above

pat,aal=

“ J
ai-r'f‘—,\
d

n times, recursively. The second result is the Hermitian con- 5 oM M T 1 o T -1y

jugate of the first. The last result, EGA4), is simply a uni- ' :f d¥xdMye * I Het¥ I ¥

fied form that recreates the previous two equations. This can

be applied recursively, since the right-hand side of this equa- B I T (B4)
tion is always normally ordered by construction. = - '
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whereu=x+iy. Assuming that the matrix ! can be di-
agonalized\=U 7' U', we can factor the integral into a 12=1] )\_:(ZW)ZM|I|' (B6)
product of M integrals over the complex plane: p=1lpp -

which holds provided that all the Re,,=0—i.e., that all
eigenvalues of have a positive real part. Finally, noting that

12= 11 | d®w,e Wi\ W2, ®5  |7=IL"H|al|E *=2"2M|g]|, we find that
n=1
l=aM| o], (B7)
wherew=U u. These integrals can be evaluated by a transwith the condition that the elgenvalues|0ﬂ have a positive
formation to radial coordinates, giving real part.
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