141 research outputs found

    Simultaneous radio and X-ray observations of PSR B0611+22

    Get PDF
    International audienceWe report results from simultaneous radio and X-ray observations of PSR B0611+22 which is known to exhibit bursting in its single-pulse emission. The pulse phase of the bursts vary with radio frequency. The bursts are correlated in 327/150 MHz data sets while they are anti-correlated, with bursts at one frequency associated with normal emission at the other, in 820/150 MHz data sets. Also, the flux density of this pulsar is lower than expected at 327 MHz assuming a power law. We attribute this unusual behaviour to the pulsar itself rather than absorption by external astrophysical sources. Using this data set over an extensive frequency range, we show that the bursting phenomenon in this pulsar exhibits temporal variance over a span of few hours. We also show that the bursting is quasi-periodic over the observed band. The anti-correlation in the phase offset of the burst mode at different frequencies suggests that the mechanisms responsible for phase offset and flux enhancement have different dependencies on the frequency. We did not detect the pulsar with XMM–Newton and place a 99 per cent confidence upper limit on the X-ray efficiency of 10 −5

    Detection of decametre-wavelength pulsed radio emission of 40 known pulsars

    Get PDF
    International audienceThe study of pulsars at the lowest radio frequencies observable from the ground (10-30 MHz) is complicated by strong interstellar (dispersion, scattering) and ionospheric (scintillation, refraction) propagation effects, as well as intense Galactic background noise and interference. However, it permits us to measure interstellar plasma parameters (the effects of which increase by a power of two to >4 times the wavelength), the spectrum and the pulse profile at low frequencies more accurately. Up to now, only ˜10 pulsars have been successfully detected at these frequencies. The recent upgrade of the receivers at the Ukrainian T-shaped Radio telescope, second modification (UTR-2) has increased its sensitivity and motivated a new search for pulsed radio emissions. In this work we carried out a survey of known pulsars with declination above -10°, period >0.1 s and dispersion measure (DM) < 30 pc cm-3, i.e. a sample of 74 sources. Our goal was either to detect pulsars not recorded before in the decametre range or to identify factors that prevent their detection. As a result, we have detected the radio emission of 40 pulsars, i.e. 55 per cent of the observed sample. For 30 of them, this was a first detection at these frequencies. Parameters of their average profiles have been calculated, including the intrinsic widening of the pulse (not due to interstellar scattering) with decreasing frequency. Furthermore, two pulsars beyond the selected DM (B0138+59 with DM ≈ 35 pc cm-3 and B0525+21 with DM ≈51 pc cm-3) were also detected. Our results indicate that there is still room to detect new transient and pulsed sources with low-frequency observations

    The LOFAR Transients Pipeline

    Get PDF
    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We describe its implementation, including both the algorithms adopted to maximize performance as well as the development methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a known population of transients.Comment: 30 pages, 11 figures; Accepted for publication in Astronomy & Computing; Code at https://github.com/transientskp/tk

    LOFAR sparse image reconstruction

    Get PDF
    International audienceContext. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the " compressed sensing " (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2−3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A-and W-projections) required for current and future instruments such as LOFAR and SKA

    A Gaussian-processes approach to fitting for time-variable spherical solar wind in pulsar timing data

    Get PDF
    Propagation effects are one of the main sources of noise in high-precision pulsar timing. For pulsars below an ecliptic latitude of 5°, the ionized plasma in the solar wind can introduce dispersive delays of order 100 µs around solar conjunction at an observing frequency of 300 MHz. A common approach to mitigate this assumes a spherical solar wind with a time-constant amplitude. However, this has been shown to be insufficient to describe the solar wind. We present a linear, Gaussian-process piecewise Bayesian approach to fit a spherical solar wind of time-variable amplitude, which has been implemented in the pulsar software RUN_ENTERPRISE. Through simulations, we find that the current EPTA+InPTA data combination is not sensitive to such variations; however, solar wind variations will become important in the near future with the addition of new InPTA data and data collected with the low-frequency LOFAR telescope. We also compare our results for different high-precision timing data sets (EPTA+InPTA, PPTA, and LOFAR) of 3 ms pulsars (J0030+0451, J1022+1001, J2145−0450), and find that the solar-wind amplitudes are generally consistent for any individual pulsar, but they can vary from pulsar to pulsar. Finally, we compare our results with those of an independent method on the same LOFAR data of the three millisecond pulsars. We find that differences between the results of the two methods can be mainly attributed to the modelling of dispersion variations in the interstellar medium, rather than the solar wind modelling

    Geophysical and atmospheric evolution of habitable planets

    Get PDF
    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere

    Aspects of the magnetosphere-stellar wind interaction of close-in extrasolar planets

    Get PDF
    Since 1995, more than 150 extrasolar planets were detected, of which a considerable fraction orbit their host star at very close distances. Gas giants with orbital distances below 0.1 AU are called “Hot Jupiters”. Current detection techniques are not sensitive enough for the detection of Earth-like planets, but such planets are expected at similar orbital positions. For all these so-called close-in extrasolar planets, the interaction between the stellar wind and the planetary magnetosphere is expected to be very different from the situation known from the solar system. Important differences arising from the close substellar distances include a low stellar wind velocity, a high stellar wind density and strong tidal interaction between the planet and the star. This interaction is shown to lead, for example, to a synchronisation of the planetary rotation with its orbit (“tidal locking”). Taking these points into account, planetary magnetic moments are estimated and sizes of planetary magnetospheres are derived. Two different effects resulting from the magnetospheric interaction are studied in detail. (a) Characteristics of radio emission from the magnetospheres of “Hot Jupiters” are discussed. It is shown that the frequency range and the sensitivity of current radio detectors are not sufficient to detect exoplanetary radio emission. With planned improvements of the existing instrumentation and with the construction of new radio arrays, the detection of exoplanetary radio emission will be possible in the near future. (b) The flux of galactic cosmic rays to the atmospheres of terrestrial exoplanets in close orbits around M stars is studied. Different types of planets are shown to be weakly protected against cosmic rays, which is likely to have implications for planetary habitability. This should be taken into account when selecting targets for the search for biosignatures in the spectra of terrestrial exoplanets

    Aspects of the magnetosphere stellar wind interaction of close-in extrasolar planets

    No full text
    International audienceNot Availabl

    Aspekte der Magnetosphären-Sternenwind-Wechselwirkung kurzperiodischer extrasolarer Planeten

    Get PDF
    Since 1995, more than 150 extrasolar planets were detected, of which a considerable fraction orbit their host star at very close distances. Gas giants with orbital distances below 0.1 AU are called ``Hot Jupiters''. Current detection techniques are not sensitive enough for the detection of Earth-like planets, but such planets are expected at similar orbital positions. For all these so-called close-in extrasolar planets, the interaction between the stellar wind and the planetary magnetosphere is expected to be very different from the situation known from the solar system. Important differences arising from the close substellar distances include a low stellar wind velocity, a high stellar wind density and strong tidal interaction between the planet and the star. This interaction is shown to lead, for example, to a synchronisation of the planetary rotation with its orbit (``tidal locking''). Taking these points into account, planetary magnetic moments are estimated and sizes of planetary magnetospheres are derived. Two different effects resulting from the magnetospheric interaction are studied in detail. (a) Characteristics of radio emission from the magnetospheres of ``Hot Jupiters'' are discussed. It is shown that the frequency range and the sensitivity of current radio detectors are not sufficient to detect exoplanetary radio emission. With planned improvements of the existing instrumentation and with the construction of new radio arrays, the detection of exoplanetary radio emission will be possible in the near future. (b) The flux of galactic cosmic rays to the atmospheres of terrestrial exoplanets in close orbits around M stars is studied. Different types of planets are shown to be weakly protected against cosmic rays, which is likely to have implications for planetary habitability. This should be taken into account when selecting targets for the search for biosignatures in the spectra of terrestrial exoplanets.Seit 1995 sind mehr als 150 extrasolare Planeten entdeckt worden, von denen sich ein beträchtlicher Anteil auf Bahnen mit sehr kleinen Halbachsen befindet. Gasriesen mit Halbachsen von weniger als 0.1 AU werden als ``heiße Jupiter'' bezeichnet. Auch wenn die aktuellen Beobachtungsmethoden nicht empfindlich genug sind, um erdähnliche Planeten zu entdecken, werden solchen Planeten in ähnlichen Umlaufbahnen erwartet. Für alle diese kurzperiodischen Exoplaneten wird eine völlig andere Wechselwirkung zwischen dem Sternenwind und der planetaren Magnetosphäre erwartet als im Sonnensystem. Wichtige Unterschiede, die aus dem geringen Bahnabstand resultieren, sind eine geringe Sternenwindgeschwindigkeit, eine hohe Sternenwinddichte sowie starke Gezeitenwechselwirkung zwischen dem Planeten und den Stern. Es wird gezeigt, daß diese Wechselwirkung unter anderem zur Synchronisation der Planetenrotation mit der Umlaufbahn führt (``gebundene Rotation''). Unter Berücksichtung dieser Ergebnisse werden magnetische Momente von Planeten abgeschätzt und Magnetosphärengrößen abgeleitet. Zwei verschiedene Effekte, die daraus resultierten, werden im Detail untersucht. (a) Charakteristiken von Radiostrahlung aus den Magnetosphären von ``heißen Jupitern'' werden diskutiert. Es wird gezeigt, daß der Frequenzbereich und die Empfindlichkeit aktueller Radiodetektoren nicht ausreichen, um exoplanetare Radiostrahlung nachzuweisen. Mit geplanten Erweiterungen bestehender Instrumente und mit dem Bau neuer Radiodetektoren wird dies in naher Zukunft möglich sein. (b) Der Fluß von galaktischer kosmischer Strahlung in die Atmosphären kurzperiodischer terrestrischer Exoplaneten um M Sterne wird untersucht.Es wird gezeigt, daß verschiedene Typen von Planeten nur wenig gegen kosmische Strahlung abgeschirmt sind, was vermutlich Auswirkungen auf deren Bewohnbarkeit hat. Dies sollte bei der Auswahl von Zielen für die Suche nach Biosignaturen in planetaren Spektren berücksichtigt werden
    corecore