1,480 research outputs found

    Mass loss out of close binaries. II

    Full text link
    Liberal evolution of interacting binaries has been proposed previously by several authors in order to meet various observed binary characteristics better than conservative evolution does. Since Algols are eclipsing binaries the distribution of their orbital periods is precisely known. The distribution of their mass ratios contains however more uncertainties. We try to reproduce these two distributions theoretically using a liberal scenario in which the gainer star can lose mass into interstellar space as a consequence of its rapid rotation and the energy of a hot spot. In a recent paper (Van Rensbergen et al. 2010, A&A) we calculated the liberal evolution of binaries with a B-type primary at birth where mass transfer starts during core hydrogen burning of the donor. In this paper we include the cases where mass transfer starts during hydrogen shell burning and it is our aim to reproduce the observed distributions of the system parameters of Algol-type semi-detached systems. Our calculations reveal the amount of time that an Algol binary lives with a well defined value of mass ratio and orbital period. We use these data to simulate the distribution of mass ratios and orbital periods of Algols. Binaries with a late B-type initial primary hardly lose any mass whereas those with an early B primary evolve in a non-conservative way. Conservative binary evolution predicts only ~ 12 % of Algols with a mass ratio q above 0.4. This value is raised up to ~ 17 % using our scenario of liberal evolution, which is still far below the ~ 45 % that is observed. Observed orbital periods of Algol binaries larger than one day are faithfully reproduced by our liberal scenario. Mass ratios are reproduced better than with conservative evolution, but the resemblance is still poor.Comment: 11 pages, 6 figures, accepted for publication in A&A; accepted versio

    Transportation policy for campus climate action planning: Process and policy implications

    Get PDF
    This article discusses the innovative methods used to complete the transportation components of Cal Poly’s Climate Action Plan (CAP). The campus\u27s CAP was completed by a BSCRP studio during the fall and winter quarters (2015-2016AY) in collaboration with Facilities Planning and Capital Projects. Professors William Riggs and Adrienne Greve (instructors for the studio along with Chris Clark) developed the methods discussed here, and C. Kai Lord-Farmer was the graduate assistant who assisted in completing the technical analysis

    Molecular Gas in the Low Metallicity, Star Forming Dwarf IC 10

    Full text link
    We present a complete survey of CO 1->0 emission in the Local Group dwarf irregular IC 10. The survey, conducted with the BIMA interferometer, covers the stellar disk and a large fraction of the extended HI envelope with the sensitivity and resolution necessary to detect individual giant molecular clouds (GMCs) at the distance of IC 10 (950 kpc). We find 16 clouds with a total CO luminosity of 1 x 10^6 K km s^-1 pc^2, equivalent to 4 x 10^6 Msun of molecular gas using the Galactic CO-to-H2 conversion factor. Observations with the ARO 12m find that BIMA may resolve out as much as 50% of the CO emission, and we estimate the total CO luminosity as 2.2 x 10^6 K km s^-1 pc^2. We measure the properties of 14 GMCs from high resolution OVRO data. These clouds are very similar to Galactic GMCs in their sizes, line widths, luminosities, and CO-to-H2 conversion factors despite the low metallicity of IC 10 (Z ~ 1/5 Zsun). Comparing the BIMA survey to the atomic gas and stellar content of IC 10 we find that most of the CO emission is coincident with high surface density HI. IC 10 displays a much higher star formation rate per unit molecular (H2) or total (HI+H2) gas than most galaxies. This could be a real difference or may be an evolutionary effect - the star formation rate may have been higher in the recent past.Comment: 21 pages, 14 figures, Accepted to Ap

    Mass loss out of close binaries

    Full text link
    In a liberal evolutionary scenario, mass can escape from a binary during eras of fast mass transfer. We calculate the mass lost by binaries with a B-type primary at birth where mass transfer starts during hydrogen core burning of the donor. We simulate the distribution of mass-ratios and orbital periods for those interacting binaries. The amount of time the binary shows Algol characteristics within different values of mass-ratio and orbital period has been fixed from conservative and liberal evolutionary calculations. We use these data to simulate the distribution of mass-ratios and orbital periods of Algols with the conservative as well as the liberal model. We compare mass-ratios and orbital periods of Algols obtained by conservative evolution with those obtained by our liberal model. Since binaries with a late B-type primary evolve almost conservatively, the overall distribution of mass-ratios will only yield a few Algols more with high mass-ratios than conservative calculations do. Whereas the simulated distribution of orbital periods of Algols fits the observations well, the simulated distribution of mass-ratios produces always too few systems with large values.Comment: 6 pages, 6 figures, accepted for publication in A&A; accepted versio

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    AzTEC Millimetre Survey of the COSMOS Field - II. Source Count Overdensity and Correlations with Large-Scale Structure

    Get PDF
    We report an over-density of bright sub-millimetre galaxies (SMGs) in the 0.15 sq. deg. AzTEC/COSMOS survey and a spatial correlation between the SMGs and the optical-IR galaxy density at z <~ 1.1. This portion of the COSMOS field shows a ~ 3-sigma over-density of robust SMG detections when compared to a background, or "blankfield", population model that is consistent with SMG surveys of fields with no extragalactic bias. The SMG over-density is most significant in the number of very bright detections (14 sources with measured fluxes S(1.1mm) > 6 mJy), which is entirely incompatible with sample variance within our adopted blank-field number densities and infers an over-density significance of >> 4. We find that the over-density and spatial correlation to optical-IR galaxy density are most consistent with lensing of a background SMG population by foreground mass structures along the line of sight, rather than physical association of the SMGs with the z <~ 1.1 galaxies/clusters. The SMG positions are only weakly correlated with weak-lensing maps, suggesting that the dominant sources of correlation are individual galaxies and the more tenuous structures in the region and not the massive and compact clusters. These results highlight the important roles cosmic variance and large-scale structure can play in the study of SMGs.Comment: 12 pages, 11 figures, 2 tables, accepted for publication in MNRA

    Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE - I. Source catalogue and number counts

    Get PDF
    [Abridged] We present the first results from a 1.1 mm confusion-limited map of the GOODS-S field taken with AzTEC on the ASTE telescope. We imaged a 270 sq. arcmin field to a 1\sigma depth of 0.48 - 0.73 mJy/beam, making this one of the deepest blank-field surveys at mm-wavelengths ever achieved. Although our GOODS-S map is extremely confused, we demonstrate that our source identification and number counts analyses are robust, and the techniques discussed in this paper are relevant for other deeply confused surveys. We find a total of 41 dusty starburst galaxies with S/N >= 3.5 within this uniformly covered region, where only two are expected to be false detections. We derive the 1.1mm number counts from this field using both a "P(d)" analysis and a semi-Bayesian technique, and find that both methods give consistent results. Our data are well-fit by a Schechter function model with (S', N(3mJy), \alpha) = (1.30+0.19 mJy, 160+27 (mJy/deg^2)^(-1), -2.0). Given the depth of this survey, we put the first tight constraints on the 1.1 mm number counts at S(1.1mm) = 0.5 mJy, and we find evidence that the faint-end of the number counts at S(850\mu m) < 2.0 mJy from various SCUBA surveys towards lensing clusters are biased high. In contrast to the 870 \mu m survey of this field with the LABOCA camera, we find no apparent under-density of sources compared to previous surveys at 1.1 mm. Additionally, we find a significant number of SMGs not identified in the LABOCA catalogue. We find that in contrast to observations at wavelengths < 500 \mu m, MIPS 24 \mu m sources do not resolve the total energy density in the cosmic infrared background at 1.1 mm, demonstrating that a population of z > 3 dust-obscured galaxies that are unaccounted for at these shorter wavelengths potentially contribute to a large fraction (~2/3) of the infrared background at 1.1 mm.Comment: 21 pages, 9 figures. Accepted to MNRAS

    Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report the detection of an extremely bright (\sim37 mJy at 1100 μ\mum and \sim91 mJy at 880 μ\mum) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 μ\mum observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 μ\mum and SMA 880 μ\mum observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of \sim 4^{\prime\prime}) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 σ\sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z3.4z \sim 3.4 behind a foreground, optically visible (but red) galaxy at z1.4z \sim 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (LIRL_{\rm IR}) and star formation rate (SFR) are 6×10136 \times 10^{13} LL_{\odot} and 11000 MM_{\odot} yr1^{-1}, respectively, assuming that the LIRL_{\rm IR} is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale (3×1073 \times 10^{7} yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.Comment: 18 pages, 13 figure

    Frontal traumatic brain injury in rats causes long-lasting impairments in impulse control that are differentially sensitive to pharmacotherapeutics and associated with chronic neuroinflammation.

    Get PDF
    Traumatic brain injury (TBI) affects millions yearly, and is increasingly associated with chronic neuropsychiatric symptoms. We assessed the long-term effects of different bilateral frontal controlled cortical impact injury severities (mild, moderate, severe) on the five-choice serial reaction time task, a paradigm with relatively independent measurements of attention, motor impulsivity and motivation. Moderately- and severely-injured animals exhibited impairments across all cognitive domains that were still evident 14 weeks post-injury, while mild-injured animals only demonstrated persistent deficits in impulse control. However, recovery of function varied considerably between subjects such that some showed no impairment (“TBI-resilient”), some demonstrated initial deficits that recovered (“TBI-vulnerable”) and some never recovered (“chronically-impaired”). Three clinically-relevant treatments for impulsecontrol or TBI, amphetamine, atomoxetine, and amantadine, were assessed for efficacy in treating injury-induced deficits. Susceptibility to TBI affected the response to pharmacological challenge with amphetamine. Whereas sham and TBI-resilient animals showed characteristic impairments in impulse control at higher doses, amphetamine had the opposite effect in chronically-impaired rats, improving task performance. In contrast, atomoxetine and amantadine reduced premature responding but increased omissions, suggesting psychomotor slowing. Analysis of brain tissue revealed that generalized neuroinflammation was associated with impulsivity even when accounting for the degree of brain damage. This is one of the first studies to characterize psychiatric-like symptoms in experimental TBI. Our data highlight the importance of testing pharmacotherapies in TBI models in order to predict efficacy, and suggest that neuroinflammation may represent a treatment target for impulse control problems following injury

    The redshift distribution of dusty star forming galaxies from the SPT survey

    Full text link
    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3mm spectral scans between 84-114GHz for 15 galaxies and targeted ALMA 1mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI] , [NII] , H_2O and NH_3. We further present APEX [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new mm/submm line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z=3.9+/-0.4, and the highest-redshift source in our sample is at z=5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4mm-selected sources with a median redshift of z=3.1+/-0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution
    corecore