In this chapter we review the use of spins in optically-active InAs quantum
dots as the key physical building block for constructing a quantum repeater,
with a particular focus on recent results demonstrating entanglement between a
quantum memory (electron spin qubit) and a flying qubit (polarization- or
frequency-encoded photonic qubit). This is a first step towards demonstrating
entanglement between distant quantum memories (realized with quantum dots),
which in turn is a milestone in the roadmap for building a functional quantum
repeater. We also place this experimental work in context by providing an
overview of quantum repeaters, their potential uses, and the challenges in
implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the
Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W.
Mitchell