52 research outputs found

    Estudio de la corrosión bajo tensión de laminación en la soldadura TIG de acero AISI 316 con aporte ER 316L

    Full text link
    [EN] It consists of the welding of AISI 316 stainless steel sheets with TIG welding and ER 316L rod insertion, subsequently laminated to different thicknesses and exposed to welding in heavy corrosion processes .[ES] Consiste en la soldadura de chapas de acero inoxidable AISI 316 con soldadura TIG y aporte de varilla ER 316L, posteriormente laminadas a distintos espesores y expuestas dichas soldaduras a procesos de corrosión por pesadaLópez Greses, C. (2017). Estudio de la corrosión bajo tensión de laminación en la soldadura TIG de acero AISI 316 con aporte ER 316L. Universitat Politècnica de València. http://hdl.handle.net/10251/88827TFG

    Degradación anaerobia de microalgas procedentes del tratamiento del efluente de un reactor anaerobio de membranas sumergidas

    Get PDF
    La escasez de recursos naturales y el agotamiento de los combustibles fósiles han impulsado un creciente interés en el uso de microalgas, dado que han sido reconocidas como una de las alternativas más sostenibles para suplir la demanda energética global a largo plazo y detener los acusados problemas asociados al cambio climático. Actualmente, la combinación de un tratamiento anaerobio de agua residual y su post-tratamiento mediante un cultivo de microalgas supone una prometedora alternativa, pues permite la obtención simultánea de energía en forma de biogás y un recurso hídrico reutilizable, mientras que los nutrientes son empleados para la producción de una biomasa algal, susceptible de valorización energética mediante digestión anaerobia. El objetivo de esta tesis doctoral ha consistido en estudiar la degradación anaerobia de la biomasa algal, producida en el efluente de un tratamiento anaerobio de agua residual urbana, con el fin de maximizar su valorización energética en forma de biogás. Para ello, se llevaron a cabo dos estrategias basadas en incrementar la biodegradabilidad de las microalgas: (i) mediante un pretratamiento enzimático y (ii) potenciando la actividad hidrolítica de los microorganismos anaerobios. Los resultados obtenidos del pretratamiento enzimático de las microalgas revelaron que su biodegradabilidad anaerobia puede ser incrementada mediante la adecuada combinación de pH, temperatura y dosis de enzima, teniendo una elevada influencia la adaptación del inóculo y el tipo de microalgas que se pretende degradar. Así pues, mediante el pretratamiento enzimático se consiguió incrementar la biodegradabilidad de las microalgas Scenedesmus spp. del 36.7% al 65.7%. Alternativamente a los pretratamientos, la biodegradabilidad de las microalgas puede ser incrementada potenciando la actividad hidrolítica de la propia biomasa anaerobia de dos formas: operando un reactor mesófilo a elevados tiempos de retención celular (TRC) y llevando a cabo la degradación anaerobia de microalgas en condiciones termófilas (55ºC). La operación de un biorreactor anaerobio de membrana (AnMBR) a elevados TRC y bajo condiciones mesófilas (35ºC), favorece el desarrollo de microorganismos con baja tasa de crecimiento e involucrados en la degradación de los componentes que constituyen a las microalgas. De esta forma, se alcanzó una biodegradabilidad de las microalgas Scenedesmus spp. del 70.9%, con la operación del AnMBR a un TRC de 100 días, y una biodegradabilidad del 73.9% de las microalgas Chlorella spp. con un TRC de 140 días. A su vez, el uso de la tecnología de membranas permitió modificar simultáneamente el caudal de tratamiento y la concentración de microalgas en el influente, lo que reduce la concentración de posibles inhibidores así como los costes energéticos asociados al proceso de concentración de microalgas. Además, la elevada biodegradabilidad dio lugar a bajas producciones de fango, lo que reduce los costes de su tratamiento y disposición, y generó un efluente rico en nutrientes que puede ser reutilizado para el cultivo de nueva biomasa algal. Los microorganismos termófilos exhiben una alta actividad hidrolítica que permitió obtener un incremento de la biodegradabilidad de la biomasa algal del 20.4% respecto a su digestión anaerobia a 35ºC, bajo las mismas condiciones experimentales. Sin embargo, se observó que el CSTR termófilo (Continuous Stirred Tank Reactor) no puede trabajar con concentraciones de microalgas que alcancen un valor de DQO de 20000 mgO2·L-1, debido a la liberación de grandes cantidades de amonio al medio que provoca la inhibición del proceso biológico por amoniaco. Así pues, se determinó que la presencia de amoniaco en concentraciones cercanas a 70 mgN-NH3·L-1 provoca el inicio de la inhibición, alcanzando el 30% de inhibición cuando la concentración se incrementa hasta 82 mgN-NH3·L-1. El análisis genómico del AnMBR mesófilo confirmó que su operación a un elevado TRC (100 días) favoreció la biodiversidad microbiana y promovió el desarrollo de una biomasa anaerobia fuertemente hidrolítica, responsable de la elevada biodegradabilidad de las microalgas alcanzada (70.9%). Así mismo, el análisis microbiológico del CSTR termófilo reveló la presencia de microorganismos con una elevada capacidad proteolítica y celulolítica, así como la detección del phylum EM3. A pesar de que la función metabólica de EM3 en digestores anaerobios no está todavía definida, la elevada abundancia relativa de este phylum en el reactor (38.7%) indica que debe estar involucrado en la degradación anaerobia de los compuestos de la biomasa algal en condiciones termófilas. La presente tesis doctoral demuestra que la producción de biogás a partir de la digestión anaerobia de microalgas puede maximizarse sin la necesidad de aplicar costosos pretratamientos, dando lugar a una de las mayores biodegradabilidades de biomasa algal reportada hasta el momento.Depletion of natural resources and fossil fuel reserves have triggered intense attention in the use of microalgae, which have been recognised as sustainable alternative for meeting the global energy demand in the long-term and to mitigate the effects of climate change. Nowadays, the combination of anaerobic wastewater treatment and its post-treatment through microalgae-based technologies can be considered an interesting approach for recovering energy from sewage and water resource. Likewise, mineral nutrients are used to produce microalgal biomass that can be energetically valorised through anaerobic digestion. The main objective of this thesis has been to study the anaerobic degradation of microalgae, which comes from the effluent of a wastewater anaerobic treatment, in order to maximize their energetic valorisation as biogas. For this purpose, two strategies were performed to increase microalgal biodegradability: (i) an enzymatic pretreatment of microalgal biomass and (ii) improving the hydrolytic activity of anaerobic microorganisms. Results retrieved from the enzymatic pretreatment revealed that microalgal biodegradation can be increased through an appropriate combination of pH, temperature and enzyme dose, wherein inoculum adaptation and the type of microalgae used as a substrate have a significant influence on the result. Concretely, enzymatic pretreatment increased Scenedesmus spp. microalgal biodegradability from 36.7 to 65.7%. Alternatively, microalgal biodegradability can be increased by improving the hydrolytic activity of anaerobic biomass in two ways: running the mesophilic anaerobic reactor at high solid retention times (SRT) and operating an anaerobic reactor at thermophilic conditions (55ºC). A mesophilic anaerobic membrane bioreactor (AnMBR) operated at high SRT promote the retention of low growth rate microorganisms involved in microalgal degradation. At 100 days of SRT, Scenedesmus spp. microalgae achieved a biodegradability of 70.9% and at 140 days of SRT Chlorella spp. microalgae achieved a 73.9% of biodegradability. Likewise, the use of membrane technology allows to simultaneously increase the treatment flow rate and decrease microalgal concentration in the influent, which reduces the concentration of possible inhibitors and the energy costs associated with microalgal harvesting. Furthermore, high microalgal biodegradability resulted in low sludge productions, thereby leading to a cost reduction of treatment and disposal of sludge, and produced a nutrient-rich effluent that can be reused as a grown medium for new microalgae culture. Thermophilic microorganisms exhibit high hydrolytic activity that increases microalgal biodegradation in 20.4% in comparison with the mesophilic process under the same operational conditions. However, it has been observed that thermophilic CSTR (Continuous Stirred Tank Reactor) cannot be run with a microalgal COD concentration exceeding 20000 mgO2·L-1 due to a high amount of ammonium released, which causes the biological process inhibition by free ammonia. It was observed that process inhibition started at 70 mgN-NH3·L-1 and achieved a 30% of inhibition when free ammonia concentration increased up to 82 mgN-NH3·L-1. Genomic analyse of mesophilic AnMBR confirmed that high SRT (100 days) promoted high microbial biodiversity, enriched in an anaerobic microorganisms with high hydrolytic activity that are likely responsible for the noticeably microalgal biodegradation (70.9%). Likewise, microbial analyse of thermophilic CSTR revealed a microbial population with high cellulolytic and proteolytic capabilities as well as the detection of EM3 phylum. Although functional role of EM3 remains undefined in anaerobic digesters, the high relative abundance of this phylum (38.7%) indicates that is likely involved in microalgal anaerobic degradation under thermophilic conditions. This thesis has demonstrated that biogas production through anaerobic digestion of microalgal biomass can be maximized without applying costly pretreatments, thereby resulting in one of the highest biogas production currently reported from the anaerobic digestion of raw microalgae grown in wastewater

    Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems

    Full text link
    [EN] The potential of microbial communities for efficient anaerobic conversion of raw microalgae was evaluated in this work. A long-term operated thermophilic digester was fed with three different Organic Loading Rates (OLR) (0.2, 0.3 and 0.4¿g·L¿1·d¿1) reaching 32¿41% biodegradability values. The microbial community analysis revealed a remarkable presence of microorganisms that exhibit high hydrolytic capabilities such as Thermotogae (~44.5%), Firmicutes (~17.6%) and Dictyoglomi, Aminicenantes, Atribacteria and Planctomycetes (below ~5.5%) phyla. The suggested metabolic role of these phyla highlights the importance of protein hydrolysis and fermentation when only degrading microalgae. The ecological analysis of the reactor suggests the implication of the novel group EM3 in fermentation and beta-oxidation pathways during microalgae conversion into methane. Scenedesmus spp. substrate and free ammonia concentration strongly shaped thermophilic reactor microbial structure. Partial Least Square Discriminant Analysis (PLS-DA) remarked the resilient role of minor groups related to Thermogutta, Armatimonadetes and Ruminococcaceae against a potential inhibitor like free ammonia. Towards low-cost biogas production from microalgae, this study reveals valuable information about thermophilic microorganisms that can strongly disrupt microalgae and remain in high solids retention anaerobic digesters.This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Project CTM2011-28595-C02-02) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged. The authors are thankful to Fernando Fdz-Polanco research team (University of Valladolid, Spain) for providing the thermophilic sludge from their pilot plant to inoculate the bioreactor and Llúcia Martínez and Giusseppe D'Aria from FISABIO sequencing service (Valencia, Spain) for their technical support during the Illumina sequencing design.Zamorano-López, N.; Greses-Huerta, S.; Aguado García, D.; Seco Torrecillas, A.; Borrás Falomir, L. (2019). Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. Algal Research. 41:1-9. https://doi.org/10.1016/j.algal.2019.101533S194

    Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater

    Full text link
    [EN] Anaerobic digestion of indigenous Scenedesmus spp. microalgae was studied in continuous lab-scale anaerobic reactors at different temperatures (35 degrees C and 55 degrees C), and sludge retention time - SRT (50 and 70 days). Mesophilic digestion was performed in a continuous stirred-tank reactor (CSTR) and in an anaerobic membrane bioreactor (AnMBR). Mesophilic CSTR operated at 50 days SRT only achieved 11.9% of anaerobic biodegradability whereas in the AnMBR at 70 days SRT and 50 days HRT reached 39.5%, which is even higher than the biodegradability achieved in the thermophilic CSTR at 50 days SRT (30.4%). Microbial analysis revealed a high abundance of cellulose-degraders in both reactors, AnMBR (mainly composed of 9.4% Bacteroidetes, 10.1% Chloroflexi, 8.0% Firmicutes and 13.2% Thermotogae) and thermophilic CSTR (dominated by 23.8% Chloroflexi and 12.9% Firmicutes). However, higher microbial diversity was found in the AnMBR compared to the thermophilic CSTR which is related to the SRT. since high SRT promoted low growth-rate microorganisms, increasing the hydrolytic potential of the system. These results present the membrane technology as a promising approach to revalue microalgal biomass, suggesting that microalgae biodegradability and consequently the methane production could be improved operating at higher SRT. (C) 2018 Elsevier Ltd. All rights reserved.This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Project CTM2011-28595-C02-01/02) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged. The authors are thankful to Fernando Fernandez-Polanco for providing the thermophilic sludge to inoculate the reactor.This research work has been financially supported by the Generalitat Valenciana (PROMETEO/2012/029 PROJECT), which is gratefully acknowledged.Greses-Huerta, S.; Zamorano -López, N.; Borrás Falomir, L.; Ferrer, J.; Seco Torrecillas, A.; Aguado García, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management. 218:425-434. https://doi.org/10.1016/j.jenvman.2018.04.086S42543421

    Production of Short-Chain Fatty Acids (Scfas) As Chemicals or Substrates for Microbes to Obtain Biochemicals

    Get PDF
    [Abstract] Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.This article is based upon work from COST Action Yeast4Bio (CA18229), supported by COST (European Cooperation in Science and Technology). Open access funding provided by Swedish University of Agricultural Sciences. CK, NOL, MCV from the BIOENGIN group, are grateful to Xunta de Galicia for its financial support to Competitive Reference Research Groups (ED431C 2021/55). They also thank the Spanish Ministry of Science and Innovation and European FEDER funding (PID2020-117805RB-I00) for financing ongoing research, at the BIOENGIN group, on the topic of this paper. ETP, CGF and SG acknowledge the projects BIOMIO + H2 (PID2020-119403RBC21) funded by MCIN/AEI/http://dx.doi.org/10.13039/501100011033 and OLEOFERM (EraBoBiotech; PCI2021-121936) funded by MCIN/AEI/http://dx.doi.org/10.13039/501100011033 and “European Union NextGenerationEU/PRTR”. ETP also acknowledges the grant RYC2019-027773-I funded by MCIN/AEI/http://dx.doi.org/10.13039/501100011033 and by “ESF Investing in your future”. VP and BM were supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) [grant number 2018–01877]Xunta de Galicia; ED431C 2021/55Suecia. Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas); 2018–0187

    Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals

    Get PDF
    Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy

    Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems

    Full text link
    [EN] Methane production from microalgae can be enhanced through anaerobic co-digestion with carbon-rich substrates and thus mitigate the inhibition risk associated with its low C:N ratio. Acclimated microbial communities for microalgae disruption can be used as a source of natural enzymes in bioenergy production. However, co-substrates with a certain microbial diversity such as primary sludge might shift the microbial structure. Substrates were generated in a Water Resource Recovery Facility (WRRF) and combined as follows: Scenedesmus or Chlorella digestion and microalgae co-digestion with primary sludge. The study was performed using two lab-scale Anaerobic Membrane Bioreactors (AnMBR). During three years, different feedstocks scenarios for methane production were evaluated with a special focus on the microbial diversity of the AnMBR. 57% of the population was shared between the different feedstock scenarios, revealing the importance of Anaerolineaceae members besides Smithella and Methanosaeta genera. The addition of primary sludge enhanced the microbial diversity of the system during both Chlorella and Scenedesmus co-digestion and promoted different microbial structures. Aceticlastic methanogen Methanosaeta was dominant in all the feedstock scenarios. A more remarkable role of syntrophic fatty acid degraders (Smithella, Syntrophobacteraceae) was observed during co-digestion when only microalgae were digested. However, no significant changes were observed in the microbial composition during anaerobic microalgae digestion when feeding only Chlorella or Scenedesmus. This is the first work revealing the composition of complex communities for semi-continuous bioenergy production from WRRF streams. The stability and maintenance of a microbial core over-time in semi-continuous AnMBRs is here shown supporting their future application in full-scale systems for raw microalgae digestion or codigestion.The Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) are gratefully acknowledged for their support to this research work through CTM2011-28595-C02-02 and CTM2014-54980-C2-1-R projects. The authors are thankful to Ph.D. Silvia Greses and Ph.D. candidate Rebecca Serna-Garcia (Universitat de Valencia, Spain) for allowing the collection of digestate samples from their bioreactors and providing a brief data characterization of their performance. As well, authors thank the support of Maria Paches (IIAMA, Valencia, Spain) during phytoplankton monitoring in the photobioreactor plant. Finally, the sequencing service from FISABIO (Valencia, Spain) is also gratefully acknowledged for their technical support during the design stage of this work.Zamorano-López, N.; Borrás, L.; Seco, A.; Aguado García, D. (2020). Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems. The Science of The Total Environment. 699:1-12. https://doi.org/10.1016/j.scitotenv.2019.134365S112699APHA, APHA/AWWA/WEF, 2012. In: Standard Methods for the Examination of Water and Wastewater. Stand. Methods, pp. 541 doi.org/ISBN 9780875532356.Astals, S., Musenze, R. S., Bai, X., Tannock, S., Tait, S., Pratt, S., & Jensen, P. D. (2015). Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Bioresource Technology, 181, 97-104. doi:10.1016/j.biortech.2015.01.039Baudelet, P.-H., Ricochon, G., Linder, M., & Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333-371. doi:10.1016/j.algal.2017.04.008Bovio, P., Cabezas, A., & Etchebehere, C. (2018). Preliminary analysis ofChloroflexipopulations in full-scale UASB methanogenic reactors. Journal of Applied Microbiology, 126(2), 667-683. doi:10.1111/jam.14115Calusinska, M., Goux, X., Fossépré, M., Muller, E. E. L., Wilmes, P., & Delfosse, P. (2018). A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1195-8Carrillo-Reyes, J., Barragán-Trinidad, M., & Buitrón, G. (2016). Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. Algal Research, 18, 341-351. doi:10.1016/j.algal.2016.07.004Chen, C., Ming, J., Yoza, B. A., Liang, J., Li, Q. X., Guo, H., … Wang, Q. (2019). Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresource Technology, 271, 353-359. doi:10.1016/j.biortech.2018.09.132Cheng, W., Chen, H., Yan, S., & Su, J. (2014). Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values. World Journal of Microbiology and Biotechnology, 30(9), 2387-2395. doi:10.1007/s11274-014-1664-6Colzi Lopes, A., Valente, A., Iribarren, D., & González-Fernández, C. (2018). Energy balance and life cycle assessment of a microalgae-based wastewater treatment plant: A focus on alternative biogas uses. Bioresource Technology, 270, 138-146. doi:10.1016/j.biortech.2018.09.005Córdova, O., Chamy, R., Guerrero, L., & Sánchez-Rodríguez, A. (2018). Assessing the Effect of Pretreatments on the Structure and Functionality of Microbial Communities for the Bioconversion of Microalgae to Biogas. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01388Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 107, 250-263. doi:10.1016/j.rser.2019.03.005Crutchik, D., Frison, N., Eusebi, A. L., & Fatone, F. (2018). Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. Water Research, 136, 112-119. doi:10.1016/j.watres.2018.02.047De Vrieze, J., Christiaens, M. E. R., & Verstraete, W. (2017). The microbiome as engineering tool: Manufacturing and trading between microorganisms. New Biotechnology, 39, 206-214. doi:10.1016/j.nbt.2017.07.001De Vrieze, J., Pinto, A. J., Sloan, W. T., & Ijaz, U. Z. (2018). The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 6(1). doi:10.1186/s40168-018-0449-9Dodsworth, J. A., Blainey, P. C., Murugapiran, S. K., Swingley, W. D., Ross, C. A., Tringe, S. G., … Hedlund, B. P. (2013). Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nature Communications, 4(1). doi:10.1038/ncomms2884Dojka, M. A., Harris, J. K., & Pace, N. R. (2000). Expanding the Known Diversity and Environmental Distribution of an Uncultured Phylogenetic Division of Bacteria. Applied and Environmental Microbiology, 66(4), 1617-1621. doi:10.1128/aem.66.4.1617-1621.2000Farag, I. F., Davis, J. P., Youssef, N. H., & Elshahed, M. S. (2014). Global Patterns of Abundance, Diversity and Community Structure of the Aminicenantes (Candidate Phylum OP8). PLoS ONE, 9(3), e92139. doi:10.1371/journal.pone.0092139Fontana, A., Kougias, P. G., Treu, L., Kovalovszki, A., Valle, G., Cappa, F., … Campanaro, S. (2018). Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics. Microbiome, 6(1). doi:10.1186/s40168-018-0583-4Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35, 50-60. doi:10.1016/j.algal.2018.08.005González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010Gonzalez-Fernandez, C., Sialve, B., & Molinuevo-Salces, B. (2015). Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs. Bioresource Technology, 198, 896-906. doi:10.1016/j.biortech.2015.09.095Gonzalez-Fernandez, C., Barreiro-Vescovo, S., de Godos, I., Fernandez, M., Zouhayr, A., & Ballesteros, M. (2018). Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1188-7González-González, L. M., Correa, D. F., Ryan, S., Jensen, P. D., Pratt, S., & Schenk, P. M. (2018). Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renewable and Sustainable Energy Reviews, 82, 1137-1148. doi:10.1016/j.rser.2017.09.091Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130. doi:10.1016/j.algal.2017.09.002Greses, S., Zamorano-López, N., Borrás, L., Ferrer, J., Seco, A., & Aguado, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 218, 425-434. doi:10.1016/j.jenvman.2018.04.086Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328-337. doi:10.1016/j.biortech.2016.04.119Ju, F., Lau, F., & Zhang, T. (2017). Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. Environmental Science & Technology, 51(7), 3982-3992. doi:10.1021/acs.est.6b06344Kadnikov, V. V., Mardanov, A. V., Beletsky, A. V., Karnachuk, O. V., & Ravin, N. V. (2019). Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles, 23(2), 189-200. doi:10.1007/s00792-018-01073-5Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7-26. doi:10.1016/j.jbiotec.2016.07.015Klassen, V., Blifernez-Klassen, O., Wibberg, D., Winkler, A., Kalinowski, J., Posten, C., & Kruse, O. (2017). Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels, 10(1). doi:10.1186/s13068-017-0871-4Leng, L., Yang, P., Singh, S., Zhuang, H., Xu, L., Chen, W.-H., … Lee, P.-H. (2018). A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresource Technology, 247, 1095-1106. doi:10.1016/j.biortech.2017.09.103Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., & Dong, T. (2017). Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 68, 120-127. doi:10.1016/j.wasman.2017.06.028Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., … Dong, T. (2017). Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management, 70, 247-254. doi:10.1016/j.wasman.2017.09.016Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresource Technology, 184, 236-244. doi:10.1016/j.biortech.2014.09.145Mansfeldt, C., Achermann, S., Men, Y., Walser, J.-C., Villez, K., Joss, A., … Fenner, K. (2019). Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. The ISME Journal, 13(6), 1589-1601. doi:10.1038/s41396-019-0371-6McIlroy, S. J., Kirkegaard, R. H., Dueholm, M. S., Fernando, E., Karst, S. M., Albertsen, M., & Nielsen, P. H. (2017). Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01134Nakamura, K., Iizuka, R., Nishi, S., Yoshida, T., Hatada, Y., Takaki, Y., … Funatsu, T. (2016). Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Scientific Reports, 6(1). doi:10.1038/srep22259Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003Peces, M., Astals, S., Jensen, P. D., & Clarke, W. P. (2018). Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Research, 141, 366-376. doi:10.1016/j.watres.2018.05.028Qiao, J.-T., Qiu, Y.-L., Yuan, X.-Z., Shi, X.-S., Xu, X.-H., & Guo, R.-B. (2013). Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresource Technology, 143, 512-518. doi:10.1016/j.biortech.2013.06.014Rinke, C. (2018). Single-Cell Genomics of Microbial Dark Matter. Microbiome Analysis, 99-111. doi:10.1007/978-1-4939-8728-3_7Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., … Sghir, A. (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6), 700-714. doi:10.1038/ismej.2009.2Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013-1021. doi:10.1016/j.chemosphere.2016.10.109Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409-416. doi:10.1016/j.biotechadv.2009.03.001Skouteris, G., Hermosilla, D., López, P., Negro, C., & Blanco, Á. (2012). Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, 198-199, 138-148. doi:10.1016/j.cej.2012.05.070Solden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current Opinion in Microbiology, 31, 217-226. doi:10.1016/j.mib.2016.04.020Solé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. doi:10.3390/molecules23092096Solé-Bundó, M., Garfí, M., Matamoros, V., & Ferrer, I. (2019). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of The Total Environment, 660, 974-981. doi:10.1016/j.scitotenv.2019.01.011Stämmler, F., Gläsner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P. J., … Spang, R. (2016). Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 4(1). doi:10.1186/s40168-016-0175-0Vanwonterghem, I., Jensen, P. D., Dennis, P. G., Hugenholtz, P., Rabaey, K., & Tyson, G. W. (2014). Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. The ISME Journal, 8(10), 2015-2028. doi:10.1038/ismej.2014.50Wang, Y., Hammes, F., De Roy, K., Verstraete, W., & Boon, N. (2010). Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 28(8), 416-424. doi:10.1016/j.tibtech.2010.04.006Weinrich, S., Koch, S., Bonk, F., Popp, D., Benndorf, D., Klamt, S., & Centler, F. (2019). Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01095Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., … Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45Xie, B., Gong, W., Tian, Y., Qu, F., Luo, Y., Du, X., … Liang, H. (2018). Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chemical Engineering Journal, 350, 1092-1102. doi:10.1016/j.cej.2018.06.032Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2011). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859-869. doi:10.1007/s00253-011-3624-5Zamorano-López, N., Borrás, L., Giménez, J. B., Seco, A., & Aguado, D. (2019). Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 290, 121787. doi:10.1016/j.biortech.2019.121787Zamorano-López, N., Greses, S., Aguado, D., Seco, A., & Borrás, L. (2019). Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. Algal Research, 41, 101533. doi:10.1016/j.algal.2019.101533Zou, Y., Xu, X., Li, L., Yang, F., & Zhang, S. (2018). Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures. Bioresource Technology, 254, 83-90. doi:10.1016/j.biortech.2017.12.054Lv, Z., Chen, Z., Chen, X., Liang, J., Jiang, J., & Loake, G. J. (2019). Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion. Waste Management, 84, 211-219. doi:10.1016/j.wasman.2018.11.04

    Enhancing methane production from lignocellulosic biomass by combined steam‑explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii

    Get PDF
    Background: Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results: Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/ g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/ g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. Conclusion: Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass

    Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials

    Get PDF
    Background Patients with chronic obstructive pulmonary disease (COPD) have few options for treatment. The efficacy and safety of the phosphodiesterase-4 inhibitor roflumilast have been investigated in studies of patients with moderate-to-severe COPD, but not in those concomitantly treated with longacting inhaled bronchodilators. The effect of roflumilast on lung function in patients with COPD that is moderate to severe who are already being treated with salmeterol or tiotropium was investigated. Methods In two double-blind, multicentre studies done in an outpatient setting, after a 4-week run-in, patients older than 40 years with moderate-to-severe COPD were randomly assigned to oral roflumilast 500 mu g or placebo once a day for 24 weeks, in addition to salmeterol (M2-127 study) or tiotropium (M2-128 study). The primary endpoint was change in prebronchodilator forced expiratory volume in 1s (FEV(1)). Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, number NCT00313209 for M2-127, and NCT00424268 for M2-128. Findings In the salmeterol plus roflumilast trial, 466 patients were assigned to and treated with roflumilast and 467 with placebo; in the tiotropium plus roflumilast trial, 371 patients were assigned to and treated with roflumilast and 372 with placebo. Compared with placebo, roflumilast consistently improved mean prebronchodilator FEV(1) by 49 mL (p<0.0001) in patients treated with salmeterol, and 80 mL (p<0.0001) in those treated with tiotropium. Similar improvement in postbronchodilator FEV(1) was noted in both groups. Furthermore, roflumilast had beneficial effects on other lung function measurements and on selected patient-reported outcomes in both groups. Nausea, diarrhoea, weight loss, and, to a lesser extent, headache were more frequent in patients in the roflumilast groups. These adverse events were associated with increased patient withdrawal. Interpretation Roflumilast improves lung function in patients with COPD treated with salmeterol or tiotropium, and could become an important treatment for these patients
    corecore