10 research outputs found

    CryoEM structure of the Nipah virus nucleocapsid assembly

    Get PDF
    Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the "3-bases-in, 3-bases-out" conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123-139, which may serve as a valuable epitope for surveillance and diagnostics

    Human Lin28 forms a high-affinity 1:1 complex with the 106~363 cluster miRNA miR-363

    Get PDF
    Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumour suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity toward this miRNA and the stoichiometry of the protein-RNA complex are unknown. Characterisation of human Lin28's interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with 1:1 stoichiometry and with similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model where the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions

    Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism

    Get PDF
    Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism

    Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers : Nanopore Engineering and Characterization

    Get PDF
    Nanopore-based sensors for nucleic acid sequencing and single-molecule detection typically employ pore-forming membrane proteins with hydrophobic external surfaces, suitable for insertion into a lipid bilayer. In contrast, hydrophilic pore-containing molecules, such as DNA origami, have been shown to require chemical modification to favor insertion into a lipid environment. In this work, we describe a strategy for inserting polar proteins with an inner pore into lipid membranes, focusing here on a circular 12-subunit assembly of the thermophage G20c portal protein. X-ray crystallography, electron microscopy, molecular dynamics, and thermal/chaotrope denaturation experiments all find the G20c portal protein to have a highly stable structure, favorable for nanopore sensing applications. Porphyrin conjugation to a cysteine mutant in the protein facilitates the protein's insertion into lipid bilayers, allowing us to probe ion transport through the pore. Finally, we probed the portal interior size and shape using a series of cyclodextrins of varying sizes, revealing asymmetric transport that possibly originates from the portal's DNA-ratchet function

    High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore

    No full text
    The application of nanopores as label-free, single-molecule biosensors for electrical or optical probing of structural features in biomolecules has been widely explored. While biological nanopores (membrane proteins and bacteriophage portal proteins) and solid-state nanopores (thin films and two-dimensional materials) have been extensively employed, the third class of nanopores known as hybrid nanopores, where an artificial membrane substitutes the organic support membrane of proteins, has been only sparsely studied due to challenges in implementation. G20c portal protein contains a natural DNA pore that is used by viruses for filling their capsid with viral genomic DNA. We have previously developed a lipid-free hybrid nanopore by "corking" the G20c portal protein into a SiN x nanopore. Herein, we demonstrate that through chemical functionalization of the synthetic nanopore, covalent linkage between the solid-state pore and the G20c portal protein considerably improves the hybrid pore stability, lifetime, and voltage resilience. Moreover, we demonstrate electric-field-driven and motor protein-mediated transport of DNA molecules through this hybrid nanopore. Our integrated protein/solid-state device can serve as a robust and durable framework for sensing and sequencing at high voltages, potentially providing higher resolution, higher signal-to-noise ratio, and higher throughput compared to the more conventional membrane-embedded protein platforms

    Literaturverzeichnis

    No full text
    corecore