64 research outputs found

    Sequence Profile of the Parallel β Helix in the Pectate Lyase Superfamily

    Get PDF
    The parallel β helix structure found in the pectatelyasesuperfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequenceprofile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel β helix. Using the unique sequenceprofile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel β helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogenListeria monocytogenes.A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D–1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel β helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel β helix

    Sequence Profile of the Parallel β Helix in the Pectate Lyase Superfamily

    Get PDF
    The parallel β helix structure found in the pectatelyasesuperfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequenceprofile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel β helix. Using the unique sequenceprofile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel β helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogenListeria monocytogenes.A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D–1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel β helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel β helix

    AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons

    Get PDF
    Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus

    Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

    Get PDF
    Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood [1, 2]. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.National Institutes of Health (U.S.)National Cancer Institute (U.S.)Smith Family FoundationDamon Runyon Cancer Research FoundationBurroughs Wellcome Fun

    Transient Antibody-Mucin Interactions Produce a Dynamic Molecular Shield against Viral Invasion

    Get PDF
    Given the difficulty in finding a cure for HIV/AIDS, a promising prevention strategy to reduce HIV transmission is to directly block infection at the portal of entry. The recent Thai RV144 trial offered the first evidence that an antibody-based vaccine may block heterosexual HIV transmission. Unfortunately, the underlying mechanism(s) for protection remain unclear. Here we theoretically examine a hypothesis that builds on our recent laboratory observation: virus-specific antibodies (Ab) can trap individual virions in cervicovaginal mucus (CVM), thereby reducing infection in vivo. Ab are known to have a weak—previously considered inconsequential—binding affinity with the mucin fibers that constitute CVM. However, multiple Ab can bind to the same virion at the same time, which markedly increases the overall Ab-mucin binding avidity, and creates an inheritable virion-mucin affinity. Our model takes into account biologically relevant length and timescales, while incorporating known HIV-Ab affinity and the respective diffusivities of viruses and Ab in semen and CVM. The model predicts that HIV-specific Ab in CVM leads to rapid formation and persistence of an HIV concentration front near the semen/CVM interface, far from the vaginal epithelium. Such an HIV concentration front minimizes the flux of HIV virions reaching target cells, and maximizes their elimination upon drainage of genital secretions. The robustness of the result implies that even exceedingly weak Ab-mucin affinity can markedly reduce the flux of virions reaching target cells. Beyond this specific application, the model developed here is adaptable to other pathogens, mucosal barriers, and geometries, as well as kinetic and diffusional effects, providing a tool for hypothesis testing and producing quantitative insights into the dynamics of immune-mediated protection

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    Considerations in children

    No full text
    Owing in part to successful long-term survival, the consequences of immunosuppression have gained wider attention from the transplant community. Both the microemulsified cyclosporine product and tacrolimus have been useful in decreasing rejection episodes and have been linked to decreased use of OKT-3. Each of these calcineurin inhibitors (tacrolimus and cyclosporine) has been associated with long-term consequences that have recently been brought to the forefront in pediatric transplantation. New immunosuppressive agents are under investigation in the pediatric liver transplant recipient with attention directed toward trying to avoid these long-term complications of calcineurin inhibitors. Incorporation of mycophenolate with either tacrolimus or cyclosporine has become commonplace in the pediatric transplant community. Likewise, limiting calcineurin inhibitor exposure in pediatric patients has recently been demonstrated with induction protocols that have included the new monoclonal antibodies to the CD-25 cell (Daclizumab and basiliximab). Steroid-sparing protocols are being investigated with an eye toward long-term outcomes with the hope of avoiding hypertension, diabetes, and growth. Other agents, such as sirolimus, are being evaluated for their usefulness in pediatric liver transplantation. © 2001 Lippincott Williams & Wilkins, Inc

    Biliary complications after pediatric liver transplantation revisited

    No full text
    Background. Biliary complications in pediatric liver transplantation (PLT) are associated with increased morbidity and mortality. Methods. Prospectively, data was collected on 89 consecutive liver transplants performed in 82 children. Eighty-nine consecutive PLTs were tracked for transplant type (partial versus whole), recipient age/weight, duct anastomosis type, surgical technique, and biliary complications. Treatments of biliary complications (surgical versus interventional radiology) were also evaluated. Results. Forty-six children (51.7%) received partial transplants and 43 (48.3%) children received whole organs. The average age for whole liver transplanted children was 8.95 ± 6.62 years and average weight was 36.2 ± 28.7 kg; for those receiving partial livers, 3.19 ± 3.52 years and 14.1 ± 13.0 kg. Duct-to-duct anastomosis was performed for 26 grafts and Roux-en-Y choledochojejunostomy for 63 grafts. Biliary complications occurred in 10 of 89 (11.2%) grafts. Complications included anastomotic strictures in four (40%), bile leak in five (50%), intraparenchymal biloma in one (10%). The complication rate for whole organs was 1/43 (2.3%) and 9/46 (19.6%) for partial organ (P =. 015). No difference in complication rates were seen in type of ductal anastomosis (7.7% vs 12.7%, P = NS). Reoperation for biliary complication was necessary in only 2/10 (20%) of grafts. Conclusion. Technical advances have reduced the incidence of biliary complications in PLT. Partial liver grafts have a statistically higher risk of biliary complication than whole grafts. Most biliary complications can be managed with radiological intervention without surgical exploration. Pediatric biliary complications are not associated with graft loss
    corecore