200 research outputs found

    Determining Histories of Slip on Normal Faults With Bedrock Scarps Using Cosmogenic Nuclide Exposure Data

    Get PDF
    Cosmogenic exposure data can be used to calculate time-varying fault slip rates on normal faults with exposed bedrock scarps. The method relies on assumptions related to how the scarp is preserved, which should be consistent at multiple locations along the same fault. Previous work commonly relied on cosmogenic data from a single sample locality to determine the slip rate of a fault. Here we show that by applying strict sampling criteria and using geologically informed modeling parameters in a Bayesian-inference Markov chain Monte Carlo method, similar patterns of slip rate changes can be modeled at multiple sites on the same fault. Consequently, cosmogenic data can be used to resolve along-strike fault activity. We present cosmogenic 36Cl concentrations from seven sites on two faults in the Italian Apennines. The average slip rate varies between sites on the Campo Felice Fault (0.84 ± 0.23 to 1.61 ± 0.27 mm yr−1), and all sites experienced a period of higher than average slip rate between 0.5 and 2 ka and a period of lower than average slip rate before 3 ka. On the Roccapreturo fault, slip rate in the center of the fault is 0.55 ± 0.11 and 0.35 ± 0.05 mm yr−1 at the fault tip near a relay zone. The estimated time since the last earthquake is the same at each site along the same fault (631 ± 620 years at Campo Felice and 2,603 ± 1,355 years at Roccapreturo). These results highlight the potential for cosmogenic exposure data to reveal the detailed millennial history of earthquake slip on active normal faults

    An Analytic Variational Study of the Mass Spectrum in 2+1 Dimensional SU(3) Hamiltonian Lattice Gauge Theory

    Get PDF
    We calculate the masses of the lowest lying eigenstates of improved SU(2) and SU(3) lattice gauge theory in 2+1 dimensions using an analytic variational approach. The ground state is approximated by a one plaquette trial state and mass gaps are calculated in the symmetric and antisymmetric sectors by minimising over a suitable basis of rectangular states

    On Intercausal Interactions in Probabilistic Relational Models

    Get PDF
    Probabilistic relational models (PRMs) extend Bayesian networks beyond propositional expressiveness by allowing the representation of multiple interacting classes. For a specific instance of sets of concrete objects per class, a ground Bayesian network is composed by replicating parts of the PRM. The interactions between the objects that are thereby induced, are not always obvious from the PRM. We demonstrate in this paper that the replicative structure of the ground network in fact constrains the space of possible probability distributions and thereby the possible patterns of intercausal interactio

    A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, host-associations, and a four-gene phylogeny

    Get PDF
    Members of the genus Plagiostoma inhabit leaves, stems, twigs, and branches of woody and herbaceous plants predominantly in the temperate Northern Hemisphere. An account of all known species of Plagiostoma including Cryptodiaporthe is presented based on analyses of morphological, cultural, and DNA sequence data. Multigene phylogenetic analyses of DNA sequences from four genes (β-tubulin, ITS, rpb2, and tef1-α) revealed eight previously undescribed phylogenetic species and an association between a clade composed of 11 species of Plagiostoma and the host family Salicaceae. In this paper these eight new species of Plagiostoma are described, four species are redescribed, and four new combinations are proposed. A key to the 25 accepted species of Plagiostoma based on host, shape, and size of perithecia, perithecial arrangement in the host, and microscopic characteristics of the asci and ascospores is provided. Disposition of additional names in Cryptodiaporthe and Plagiostoma is also discussed

    Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence

    Get PDF
    Large continental earthquakes necessarily involve failure of multiple faults or segments. But these same critically-stressed systems sometimes fail in drawn-out sequences of smaller earthquakes over days or years instead. These two modes of failure have vastly different implications for seismic hazard and it is not known why fault systems sometimes fail in one mode or the other, or what controls the termination and reinitiation of slip in protracted seismic sequences. A paucity of modern observations of seismic sequences has hampered our understanding to-date, but a series of three Mw>6 earthquakes from August to November 2016 in Central Italy represents a uniquely well-observed example. Here we exploit a wealth of geodetic, seismological and field data to understand the spatio-temporal evolution of the sequence. Our results suggest that pre-existing fault structures controlled the extent and termination of rupture in each event in the sequence, and that fluid diffusion, channelled along these same structures, may have also determined the timing of rupture reinitiation. This dual control of subsurface structure on the stop-start rupture in seismic sequences may be common; future efforts should focus on investigating its prevalence

    Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales

    Get PDF
    The Gnomoniaceae are characterised by ascomata that are generally immersed, solitary, without a stroma, or aggregated with a rudimentary stroma, in herbaceous plant material especially in leaves, twigs or stems, but also in bark or wood. The ascomata are black, soft-textured, thin-walled, and pseudoparenchymatous with one or more central or eccentric necks. The asci usually have a distinct apical ring. The Gnomoniaceae includes species having ascospores that are small, mostly less than 25 μm long, although some are longer, and range in septation from non-septate to one-septate, rarely multi-septate. Molecular studies of the Gnomoniaceae suggest that the traditional classification of genera based on characteristics of the ascomata such as position of the neck and ascospores such as septation have resulted in genera that are not monophyletic. In this paper the concepts of the leaf-inhabiting genera in the Gnomoniaceae are reevaluated using multiple genes, specifically nrLSU, translation elongation factor 1-alpha (tef1-α), and RNA polymerase II second largest subunit (rpb2) for 64 isolates. ITS sequences were generated for 322 isolates. Six genera of leaf-inhabiting Gnomoniaceae are defined based on placement of their type species within the multigene phylogeny. The new monotypic genus Ambarignomonia is established for an unusual species, A. petiolorum. A key to 59 species of leaf-inhabiting Gnomoniaceae is presented and 22 species of Gnomoniaceae are described and illustrated

    The Phoenix stream : a cold stream in the southern hemisphere

    Get PDF
    We report the discovery of a stellar stream in the Dark Energy Survey Year 1 (Y1A1) data. The discovery was made through simple color–magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color–magnitude space, we find that a stellar population with age τ=11.5±0.5 Gyr and [Fe/H]<−1.6, located 17.5±0.9 kpc from the Sun, gives an adequate description of the stream stellar population. The stream is detected over an extension of 8°.1 (2.5 kpc) and has a width of ∼54 pc assuming a Gaussian profile, indicating that a globular cluster (GC) is a probable progenitor. There is no known GC within 5 kpc that is compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities (ODs) along the stream, however, no obvious counterpart-bound stellar system is visible in the coadded images. We also find ODs along the stream that appear to be symmetrically distributed—consistent with the epicyclic OD scenario for the formation of cold streams—as well as a misalignment between the northern and southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe OD

    Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields

    Get PDF
    We present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe II (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario
    corecore