17 research outputs found

    Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos

    Get PDF
    Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Hygrothermal Characteristics of Cold Roof Cavities in New Zealand

    No full text
    The New Zealand Building Code contains minimum durability requirements for components. For roof structures the requirement is 50 years if the component is structural or 15 years if it is not. Metal roof claddings are very common in New Zealand, and roof spaces are typically not deliberately ventilated. Recently, a number of roofs are failing to meet their durability requirement, and the lack of deliberate ventilation is a contributory factor in some cases. In this paper, we consider roof failures and analyse them using the hygrothermal simulation software WUFI® 2D (version 4.1). Using the National Research Council of Canada’s Guideline on Design for Durability of Building Envelopes, we evaluate to what extent the guideline can be used for such more complex models. Experimental data from a residential dwelling where excessive roof moisture issues were discovered shortly after occupancy are presented. A novel remedial solution using daytime-only ventilation to the roof cavity was trialled, and the data were used to benchmark a two-dimensional numerical simulation of the roof space using WUFI® 2D. A larger hygrothermal data set for 71 dwellings is presented together with relevant climatic conditions. The study works towards evidence-based building code changes for roof ventilation and is an example of using the guideline document for more complicated building envelope assemblies

    Multi-User Virtual Reality Therapy for Post-Stroke Hand Rehabilitation at Home

    No full text
    Our paper describes the development of a novel multi-user virtual reality (VR) system for post-stroke rehabilitation that can be used independently in the home to improve upper extremity motor function. This is the pre-clinical phase of an ongoing collaborative, interdisciplinary research project at the Rehabilitation Institute of Chicago involving a team of engineers, researchers, occupational therapists and artists. This system was designed for creative collaboration within a virtual environment to increase patients' motivation, further engagement and to alleviate the impact of social isolation following stroke. This is a low-cost system adapted to everyday environments and designed to run on a personal computer that combines three VR environments with audio integration, wireless Kinect tracking and hand motion tracking sensors. Three different game exercises for this system were developed to encourage repetitive task practice, collaboration and competitive interaction. The system is currently being tested with 15 subjects in three settings: a multi-user VR, a single-user VR and at a tabletop with standard exercises to examine the level of engagement and to compare resulting functional performance across methods. We hypothesize that stroke survivors will become more engaged in therapy when training with a multi-user VR system and this will translate into greater gains

    Resting state EEG biomarkers of cognitive decline associated with Alzheimer's disease and mild cognitive impairment.

    No full text
    In this paper, we explore the utility of resting-state EEG measures as potential biomarkers for the detection and assessment of cognitive decline in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Neurophysiological biomarkers of AD derived from EEG and FDG-PET, once characterized and validated, would expand the set of existing diagnostic molecular biomarkers of AD pathology with associated biomarkers of disease progression and neural dysfunction. Since symptoms of AD often begin to appear later in life, successful identification of EEG-based biomarkers must account for age-related neurophysiological changes that occur even in healthy individuals. To this end, we collected EEG data from individuals with AD (n = 26), MCI (n = 53), and cognitively normal healthy controls stratified by age into three groups: 18-40 (n = 129), 40-60 (n = 62) and 60-90 (= 55) years old. For each participant, we computed power spectral density at each channel and spectral coherence between pairs of channels. Compared to age matched controls, in the AD group, we found increases in both spectral power and coherence at the slower frequencies (Delta, Theta). A smaller but significant increase in power of slow frequencies was observed for the MCI group, localized to temporal areas. These effects on slow frequency spectral power opposed that of normal aging observed by a decrease in the power of slow frequencies in our control groups. The AD group showed a significant decrease in the spectral power and coherence in the Alpha band consistent with the same effect in normal aging. However, the MCI group did not show any significant change in the Alpha band. Overall, Theta to Alpha ratio (TAR) provided the largest and most significant differences between the AD group and controls. However, differences in the MCI group remained small and localized. We proposed a novel method to quantify these small differences between Theta and Alpha bands' power using empirically derived distributions of spectral power across the time domain as opposed to averaging power across time. We defined Power Distribution Distance Measure (PDDM) as a distance measure between probability distribution functions (pdf) of Theta and Alpha power. Compared to average TAR, using PDDF enhanced the statistical significance, the effect size, and the spatial distribution of significant effects in the MCI group. We designed classifiers for differentiating individual MCI and AD participants from age-matched controls. The classification performance measured by the area under ROC curve after cross-validation were AUC = 0.85 and AUC = 0.6, for AD and MCI classifiers, respectively. Posterior probability of AD, TAR, and the proposed PDDM measure were all significantly correlated with MMSE score and neuropsychological tests in the AD group

    OnabotulinumtoxinA Displays Greater Biological Activity Compared to IncobotulinumtoxinA, Demonstrating Non-Interchangeability in Both In Vitro and In Vivo Assays

    No full text
    Differences in botulinum neurotoxin manufacturing, formulation, and potency evaluation can impact dose and biological activity, which ultimately affect duration of action. The potency of different labeled vials of incobotulinumtoxinA (Xeomin®; 50 U, 100 U, or 200 U vials; incobotA) versus onabotulinumtoxinA (BOTOX®; 100 U vial; onabotA) were compared on a unit-to-unit basis to assess biological activity using in vitro (light-chain activity high-performance liquid chromatography (LCA-HPLC) and cell-based potency assay (CBPA)) and in vivo (rat compound muscle action potential (CMAP) and mouse digit abduction score (DAS)) assays. Using LCA-HPLC, incobotA units displayed approximately 54% of the protease activity of label-stated equivalent onabotA units. Lower potency, reflected by higher EC50, ID50, and ED50 values (pooled mean ± SEM), was displayed by incobotA compared to onabotA in the CBPA (EC50: incobotA 7.6 ± 0.7 U/mL; onabotA 5.9 ± 0.5 U/mL), CMAP (ID50: incobotA 0.078 ± 0.005 U/rat; onabotA 0.053 ± 0.004 U/rat), and DAS (ED50: incobotA 14.2 ± 0.5 U/kg; onabotA 8.7 ± 0.3 U/kg) assays. Lastly, in the DAS assay, onabotA had a longer duration of action compared to incobotA when dosed at label-stated equivalent units. In summary, onabotA consistently displayed greater biological activity than incobotA in two in vitro and two in vivo assays. Differences in the assay results do not support dose interchangeability between the two products
    corecore