152 research outputs found

    Impact of nitrogen flushing and oil choice on the progression of lipid oxidation in unwashed fried sliced potato crisps

    Get PDF
    Unwashed, sliced, batch-fried potato crisps have a unique texture and are growing in popularity in the UK/EU premium snack food market. In this study, the storage stability of unwashed sliced (high surface starch) potatoes (crisps) fried in regular sunflower oil (SO) or in high oleic sunflower oil (HOSO) was compared over accelerated shelf life testing (45 °C, 6 weeks); with and without nitrogen gas flushing. Primary oxidation products (lipid hydroperoxides) were measured with a ferrous oxidation-xylenol orange (FOX) assay and volatile secondary oxidation products (hexanal) were quantified by using solid phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC/MS). Results revealed that crisps fried in SO were the least stable. Flushing the stored crisps with nitrogen gas proved to be effective in slowing down the oxidation rate after frying with sunflower oil, significantly stabilizing the crisps. However, crisps fried in HOSO were the most stable, with the lowest rate of development of oxidation markers, and this has previously not been shown for crisps with a high free starch content

    Free vibrations of thermally stressed orthotropic plates with various boundary conditions

    Get PDF
    An analytical investigation of the vibrations of thermally stressed orthotropic plates in the prebuckled region is presented. The investigation covers the broad class of trapezoidal plates with two opposite sides parallel. Each edge of the plate may be subjected to different uniform boundary conditions. variable thickness and arbitrary temperature distributions (analytical or experimental) for any desired combination of boundary conditions may be prescribed. Results obtained using this analysis are compared to experimental results obtained for isotropic plates with thermal stress, and to results contained in the literature for orthotropic plates without thermal stress. Good agreement exists for both sets of comparisons

    Suppression of properties associated with malignancy in murine melanoma-melanocyte hybrid cells.

    Get PDF
    Murine and human melanoma cells differ relatively reliably from non-tumorigenic melanocytes in certain biological properties. When cultured at low pH, melanocytes tend to be pigmented and melanoma cells unpigmented. The growth of virtually all metastatic melanoma cells is inhibited by phorbol esters such as TPA (12-O-tetradecanoyl phorbol-13-acetate), which stimulate melanocyte growth. Melanocytes fail to grow in suspension culture or produce tumours when implanted in animals, while many melanoma lines can do both. Here we studied which of these properties were dominant in hybrid cells formed by fusion of drug-resistant murine B16-F10RR melanoma cells to melanocytes of the albino and brown lines, melan-c and melan-b. The albino melanocytes are unpigmented but well-differentiated, the brown melanocytes produce pale brown pigment and the melanoma cells are unpigmented under the conditions used. All hybrid colonies observed produced black pigment, except some melan-b/melanoma hybrids when growing sparsely with TPA. Thus pigmentation was generally dominant. 14/15 hybrid lines showed stimulation of proliferation by TPA, as do melanocytes. Most hybrid lines showed no or reduced capacity for growth in suspension, though some grew better in suspension when TPA was present. There was marked suppression of the tumorigenicity of the parental melanoma cells in 4/8 hybrids examined, and tumorigenicity was reduced in the others, despite considerable chromosome loss by the passage level tested. Thus most properties of the non-tumorigenic pigment cells were dominant, as often observed for other cell lineages, and providing further evidence for gene loss in the genesis of malignant melanoma

    The characterisation of Wickerhamomyces anomalus M15, a highly tolerant yeast for bioethanol production using seaweed derived medium

    Get PDF
    Advanced generation biofuels have potential for replacing fossil fuels as society moves forward into a net-zero carbon future. Marine biomass is a promising source of fermentable sugars for fermentative bioethanol production; however the medium derived from seaweed hydrolysis contains various inhibitors, such as salts that affected ethanol fermentation efficiency. In this study the stress tolerance of a marine yeast, Wickerhamomyces anomalus M15 was characterised. Specific growth rate analysis results showed that Wickerhamomyces anomalus M15 could tolerate up to 600 g/L glucose, 150 g/L xylose and 250 g/L ethanol, respectively. Using simulated concentrated seaweed hydrolysates, W. anomalus M15’s bioethanol production potential using macroalgae derived feedstocks was assessed, in which 5.8, 45.0, and 19.9 g/L ethanol was produced from brown (Laminaria digitata), green (Ulva linza) and red seaweed (Porphyra umbilicalis) based media. The fermentation of actual Ulva spp. hydrolysate harvested from United Kingdom shores resulted in a relatively low ethanol concentration (15.5 g/L) due to challenges that arose from concentrating the seaweed hydrolysate. However, fed-batch fermentation using simulated concentrated green seaweed hydrolysate achieved a concentration of 73 g/L ethanol in fermentations using both seawater and reverse osmosis water. Further fermentations conducted with an adaptive strain W. anomalus M15-500A showed improved bioethanol production of 92.7 g/L ethanol from 200 g/L glucose and reduced lag time from 93 h to 24 h in fermentation with an initial glucose concentration of 500 g/L. The results indicated that strains W. anomalus M15 and W. anomalus M15-500A have great potential for industrial bioethanol production using marine biomass derived feedstocks. It also suggested that if a concentrated high sugar content seaweed hydrolysate could be obtained, the bioethanol concentration could achieve 90 g/L or above, exceeding the minimum industrial production threshold

    Solvent response to fluorine-atom reaction dynamics in liquid acetonitrile

    Get PDF
    Solvent restructuring and vibrational cooling follow exothermic fluorine-atom reactions in acetonitrile.</p

    Recombination, Solvation and Reaction of CN Radicals Following Ultraviolet Photolysis of ICN in Organic Solvents

    Get PDF
    The fates of CN radicals produced by ultraviolet (UV) photolysis of ICN in various organic solvents have been examined by transient electronic and vibrational absorption spectroscopy (TEAS and TVAS). Near-UV and visible bands in the TEAS measurement enable direct observation of the CN radicals and their complexes with the solvent molecules. Complementary TVAS measurements probe the products of CN–radical reactions. Geminate recombination to form ICN and INC is a minor pathway on the 150 fs −1300 ps time scales of our experiments in the chosen organic solvents; nonetheless, large infrared transition dipole moments permit direct observation of INC that is vibrationally excited in the CN stretching mode. The time constants for INC vibrational cooling range from 30 ps in tetrahydrofuran (THF) to 1400 ps in more weakly interacting solvents such as chloroform. The major channel for CN removal in the organic solvents is reaction with solvent molecules, as revealed by depletion of solvent absorption bands and growth of product bands in the TVA spectra. HCN is a reaction product of hydrogen atom abstraction in most of the photoexcited solutions, and forms with vibrational excitation in both the C–H and CN stretching modes. The vibrational cooling rate of the CN stretch in HCN depends on the solvent, and follows the same trend as the cooling rate of the CN stretch in INC. However, in acetonitrile solution an additional reaction pathway produces C<sub>3</sub>H<sub>3</sub>N<sub>2</sub><sup>•</sup> radicals, which release HCN on a much longer time scale

    Ultrafast 2D-IR spectroscopy of [NiFe] hydrogenase from E. coli reveals the role of the protein scaffold in controlling the active site environment

    Get PDF
    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of Escherichia coli Hyd-1 (EcHyd-1) reveals the structural and dynamic influence of the protein scaffold on the Fe(CO)(CN)2 unit of the active site. Measurements on as-isolated EcHyd-1 probed a mixture of active site states including two, which we assign to Nir-SI/II, that have not been previously observed in the E. coli enzyme. Explicit assignment of carbonyl (CO) and cyanide (CN) stretching bands to each state is enabled by 2D-IR. Energies of vibrational levels up to and including two-quantum vibrationally excited states of the CO and CN modes have been determined along with the associated vibrational relaxation dynamics. The carbonyl stretching mode potential is well described by a Morse function and couples weakly to the cyanide stretching vibrations. In contrast, the two CN stretching modes exhibit extremely strong coupling, leading to the observation of formally forbidden vibrational transitions in the 2D-IR spectra. We show that the vibrational relaxation times and structural dynamics of the CO and CN ligand stretching modes of the enzyme active site differ markedly from those of a model compound K[CpFe(CO)(CN)2] in aqueous solution and conclude that the protein scaffold creates a unique biomolecular environment for the NiFe site that cannot be represented by analogy to simple models of solvation

    Reaction Dynamics of CN Radicals in Acetonitrile Solutions

    Get PDF
    The bimolecular reactions that follow 267 nm ultraviolet photolysis of ICN in acetonitrile solution have been studied using transient absorption spectroscopy on the picosecond time scale. Time-resolved electronic absorption spectroscopy (TEAS) in the ultraviolet and visible spectral regions observes rapid production and loss (with a decay time constant of 0.6 ± 0.1 ps) of the photolytically generated free CN radicals. Some of these radicals convert to a solvated form which decays with a lifetime of 8.5 ± 2.1 ps. Time-resolved vibrational absorption spectroscopy (TVAS) reveals that the free and solvated CN-radicals undergo geminate recombination with I atoms to make ICN and INC, H atom abstraction reactions, and addition reactions to solvent molecules to make C<sub>3</sub>H<sub>3</sub>N<sub>2</sub> radical species. These radical products have a characteristic absorption band at 2036 cm<sup>–1</sup> that shifts to 2010 cm<sup>–1</sup> when ICN is photolyzed in CD<sub>3</sub>CN. The HCN yield is low, suggesting the addition pathway competes effectively with H atom abstraction from CH<sub>3</sub>CN, but the delayed growth of the C<sub>3</sub>H<sub>3</sub>N<sub>2</sub> radical band is best described by reaction of solvated CN radicals through an unobserved intermediate species. Addition of methanol or tetrahydrofuran as a cosolute promotes H atom abstraction reactions that produce vibrationally hot HCN. The combination of TEAS and TVAS measurements shows that the rate-limiting process for production of ground-state HCN is vibrational cooling, the rate of which is accelerated by the presence of methanol or tetrahydrofuran

    Selection of yeast strains for bioethanol production from UK seaweeds

    Get PDF
    Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol
    • …
    corecore